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Objectives

1 Propose a flexible robust methodology for bioequivalence

2 Evaluate/motivate need for robust methods in bioequivalence

3 Compare robust and conventional methods empirically:

Apply methodology to a reasonably large data pool of
conventional bioequivalence studies
Apply methodology to a number of replicate design
bioequivalence studies

Do the above for:

Conventional average bioequivalence assessment

Data from typical 2× 2 crossover studies

Reference-scaled average bioequivalence assessment

Data from replicate design crossover studies
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Rationale: Potential Need for Robust Methodology

Violation of usual assumptions for “normal theory” analysis

Outliers

Heavy-tailed distribution (including outliers)

Skewness of the distribution

5 / 111



Rationale: Approach

Replace the normal distribution by the Student t distribution:

Accommodates heavy tails/outliers

Small degrees of freedom

Accommodates skewness

If skew Student t distribution is used
(Only for larger datasets)

Bayesian approach:

Noninformative priors

Good frequentist properties

Robust approach successfully applied even for hierarchical
nonlinear models

Burger & Schall (2018). Robust fit of Bayesian mixed effects regression models with application to colony forming

unit count in tuberculosis research. Stat. Med.
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Rationale: Approach

Previous literature:

De Souza et al. (2016):

Univariate and bivariate models ⇒ 2× 2 crossover designs
Extended generalized gamma distribution
Skew Student t distribution

Ghosh & Ntzoufras (2005):

Population and individual bioequivalence
Student t

De Souza et al. (2016). The use of asymmetric distributions in average bioequivalence. Stat. Med.

Ghosh & Ntzoufras (2005). Testing population and individual bioequivalence: a hierarchical Bayesian approach
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Average Bioequivalence: Statistical Model

Conventional model for standard 2× 2 crossover study

yij = µ+ si + ζh + πm + τj + eij

yij log-bioavailability for subject i and formulation j = T ,R

µ overall mean

si random effects (subject)

ζh (sequence), πm (period), τj (treatment): fixed effects

eij residual

var(si ) = σ2
B and var(eij) = σ2

W
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Average Bioequivalence: Statistical Model

Statistical decision rule

Calculate 90% two-sided confidence interval (CI) for exp(τT − τR)

ABE concluded if the CI falls in bioequivalence range 0.80 and 1.25
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Average Bioequivalence: Types of Outlier

1 Subject outlier (between-subject outlier):

For subject i , both observations, yiT and yiR , are extreme, in
the same direction
Could be modeled as a mean shift in the subject effect si
No consequences since mean shift in si has no effect on point
or interval estimates of relative bioavailability

2 Single data point outlier (within-subject outlier):

For subject i , either yiT or yiR , or both (but in opposite
directions), is extreme
... within-subject difference yiT − yiR is extreme
Can severely affect results of the bioequivalence test

Schall, Ring, Endrenyi (2010). Residuals and outliers in replicate design crossover studies. J. Biopharm. Stat.
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Average Bioequivalence: Robust Methodology

Robust methodology

Achieve robustness by:

1 Use standard model for 2× 2 crossover study (see above)
2 But specify heavy-tailed distributions for residuals (and subject

effects)
3 Here, use Student t distributions with low degrees of freedom
4 (Preferable to estimate the degrees of freedom, but can also

be fixed)

Fit the model using a Bayesian approach

Here: Compare Student t with normal model (both Bayes)
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Average Bioequivalence: Robust Methodology

Residuals and random effects

BayesT

Student t distribution accommodates heavy tails/outliers
... eij ∼ t

(
0, σ2∗

W , vW
)

where σ2
W = vW

vW−2σ
2∗
W

... si ∼ t
(
0, σ2∗

B , vB
)

where σ2
B = vB

vB−2σ
2∗
B

... vW , vB ⇒ degrees of freedom

BayesN

Normal distribution – not robust to outliers
... eij ∼ Normal

(
0, σ2∗

W

)
where σ2

W = σ2∗
W

... si ∼ Normal
(
0, σ2∗

B

)
where σ2

B = σ2∗
B
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Average Bioequivalence: Robust Methodology

Prior specifications

Vague priors

... µ, ζh, πm, τj ∼ N (0, 10000)

... σ−2∗
W ∼ Gamma(0.0001, 0.0001)

... vW , vB ∼ Normal(0, 10000)T (2,∞) (half-normal)

... σ∗B ∼ t (0, 10000, 2)T (0,∞) (half-t)
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Average Bioequivalence: Robust Methodology

Implementation

Fit model using JAGS via R package runjags

Student t: Mixture of normal & gamma distribution

Speeds up convergence
Most priors are conjugate ⇒ fast convergence

ABE ⇒ calculate:

Posterior estimate of exp(τT − τR)
90% highest posterior density (HPD) interval: LCL and UCL

Deviance information criterion (DIC): Discriminate between
BayesN & BayesT
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Average Bioequivalence: Data Pool

Pool of datasets from conventional 2× 2 bioequivalence studies:

65 datasets of T/R comparisons

... for both AUC and Cmax

Schall (2012). The empirical coverage of confidence intervals: Point estimates and confidence intervals for

confidence levels. Biometrical J.
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Average Bioequivalence: Need for Robust Methodology

Need for Robust Methodology: Empirical Study

Fit BayesT model to each dataset in the data pool:

Estimate degrees of freedom of Student t distribution

Compare with conventional REML & HL methods:

Shifts in point and interval estimates
Confidence interval lengths
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Need for Robust Methodology: Degrees of Freedom

Figure: BayesT : Estimates of Residual DF – AUC
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Need for Robust Methodology: Degrees of Freedom

Figure: BayesT : Estimates of Random DF – AUC
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Need for Robust Methodology: Degrees of Freedom

Figure: BayesT : Estimates of Residual DF – Cmax
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Need for Robust Methodology: Degrees of Freedom

Figure: BayesT : Estimates of Random DF – Cmax
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Need for Robust Methodology: Degrees of Freedom

Summary (degrees of freedom):

8/65 datasets for AUC and 5/65 datasets for Cmax suggest a
“heavy tailed” distribution of the residuals

Suggests robust methodology might be needed in a small but
non-negligible proportion of studies

(Data pool possibly biased towards “neat” datasets /
“successful” studies)

Heavy tails in subject effect distribution are rare in this data
pool (homogeneous subject populations?)

In any case irrelevant for bioequivalence assessment
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Need for Robust Methodology: Shift in Point and Interval Estimates

Figure: BayesT vs REML: eCDF of Shift in Estimates of ABE – AUC
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Need for Robust Methodology: Shift in Point and Interval Estimates

Figure: BayesT vs REML: eCDF of Shift in LCLs of ABE – AUC

Shift in Lower Confidence Limit

eC
D

F

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

0
0.

1
0.

2
0.

3
0.

4
0.

5
0.

6
0.

7
0.

8
0.

9
1

42 / 111



Need for Robust Methodology: Shift in Point and Interval Estimates

Figure: BayesT vs REML: eCDF of Shift in UCLs of ABE – AUC

Shift in Upper Confidence Limit
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Need for Robust Methodology: Shift in Point and Interval Estimates

Figure: BayesT vs REML: eCDF of Shift in Point Estimate of ABE – Cmax
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Need for Robust Methodology: Shift in Point and Interval Estimates

Figure: BayesT vs REML: eCDF of Shift in LCL of ABE – Cmax
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Need for Robust Methodology: Shift in Point and Interval Estimates

Figure: BayesT vs REML: eCDF of Shift in UCL of ABE – Cmax

Shift in Upper Confidence Limit
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Need for Robust Methodology: Shift in Point and Interval Estimates

Summary (shift in point and interval estimates of GMR):

In 5% of datasets the point estimate and confidence limits
shift by ± 0.02 units (AUC & Cmax)

Suggests robust methodology might be needed in a small but
non-negligible proportion of studies

(Again note possible bias towards “neat” datasets /
“successful” studies)
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Need for Robust Methodology: Relative Confidence Interval Widths

Relative Confidence Interval Widths: Plot

Relative CI widths against (estimated) residual degrees of
freedom

Relative CI widths against “need for robustness”
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Need for Robust Methodology: Relative Confidence Interval Widths

Figure: BayesT vs REML: Ratio of CI Widths – AUC
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Need for Robust Methodology: Relative Confidence Interval Widths

Figure: BayesT vs REML: Ratio of CI Widths – Cmax
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Need for Robust Methodology: Relative Confidence Interval Widths

Summary (ratio of CI widths):

Robust CIs are narrower than non-robust CIs when outliers are
present (distribution is heavy-tailed)

Robust CIs are similar to non-robust CIs when no outliers are
present (distribution is not heavy-tailed)

Reason:

Outliers/heavy tails inflate the residual variance
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Method Comparison: Agreement Between Methods

Table: AUC and Cmax: ABE Outcomes

Method
REML HL BayesN BayesT

Pass Fail Pass Fail Pass Fail Pass Fail Total
Method Outcome n (%) n (%) n (%) n (%) n (%) n (%) n (%) n (%) n (%)

REML Pass 117 (98.3) 2 (1.7) 118 (99.2) 1 (0.8) 118 (99.2) 1 (0.8) 119 (100.0)
Fail 4 (36.4) 7 (63.6) 0 (0.0) 11 (100.0) 1 (9.1) 10 (90.9) 11 (100.0)

HL Pass 117 (96.7) 4 (3.3) 116 (95.9) 5 (4.1) 118 (97.5) 3 (2.5) 121 (100.0)
Fail 2 (22.2) 7 (77.8) 2 (22.2) 7 (77.8) 1 (11.1) 8 (88.9) 9 (100.0)

BayesN Pass 118 (100.0) 0 (0.0) 116 (98.3) 2 (1.7) 117 (99.2) 1 (0.8) 118 (100.0)
Fail 1 (8.3) 11 (91.7) 5 (41.7) 7 (58.3) 2 (16.7) 10 (83.3) 12 (100.0)

BayesT Pass 118 (99.2) 1 (0.8) 118 (99.2) 1 (0.8) 117 (98.3) 2 (1.7) 119 (100.0)
Fail 1 (9.1) 10 (90.9) 3 (27.3) 8 (72.7) 1 (9.1) 10 (90.9) 11 (100.0)
Total 119 (91.5) 11 (8.5) 121 (93.1) 9 (6.9) 118 (90.8) 12 (9.2) 119 (91.5) 11 (8.5) 130 (100.0)

The DIC statistic preferred BayesT over BayesN in 44 out of 130 cases.
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Method Comparison: Agreement Between Methods

Summary (method comparison):

BayesT method agrees well with REML analysis

BayesT method agrees better with REML analysis than HL
method

DIC statistic prefers BayesT to BayesN in about a third of
cases

57 / 111



Method Comparison: Agreement Between Methods

Summary (method comparison):

BayesT method agrees well with REML analysis

BayesT method agrees better with REML analysis than HL
method

DIC statistic prefers BayesT to BayesN in about a third of
cases

58 / 111



Method Comparison: Agreement Between Methods

Summary (method comparison):

BayesT method agrees well with REML analysis

BayesT method agrees better with REML analysis than HL
method

DIC statistic prefers BayesT to BayesN in about a third of
cases

59 / 111



Simulation Study

Assess REML, BayesN & BayesT :

Model performance

Bias
RMSE
Interval coverage

Statistical power

Parameters chosen such that ABE ratio is:

1.00
1.10
1.20

Data simulated for BayesN & BayesT

... for BayesT : vW = 2.5, vB = 15 (Heavy tailed)
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Simulation Study

Table: Simulation Study: Data from Normal Distribution

ABE Method Bias RMSE Coverage Power

1.00 REML 0.0001 0.0199 89.9 100.0
BayesN 0.0001 0.0199 89.5 100.0
BayesT 0.0001 0.0199 89.6 100.0

1.10 REML −0.0003 0.0221 89.4 100.0
BayesN −0.0003 0.0221 89.4 100.0
BayesT −0.0003 0.0221 89.3 100.0

1.20 REML 0.0002 0.0242 89.9 63.5
BayesN 0.0002 0.0242 90.0 64.1
BayesT 0.0001 0.0243 89.6 64.4
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Simulation Study

Table: Simulation Study: Data from Student t Distribution

ABE Method Bias RMSE Coverage Power

1.00 REML −0.0007 0.0404 91.0 98.6
BayesN −0.0007 0.0404 91.3 98.7
BayesT −0.0001 0.0290 92.3 100.0

1.10 REML −0.0002 0.0524 89.5 93.1
BayesN −0.0002 0.0524 89.8 93.4
BayesT −0.0017 0.0339 90.0 99.4

1.20 REML 0.0016 0.0515 90.8 29.6
BayesN 0.0016 0.0515 91.3 31.2
BayesT 0.0006 0.0358 91.7 36.3
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Simulation Study

Summary:

Data simulated from BayesN

... All models have good accuracy, precision & coverage

... All models yield similar statistical power

Data simulated from BayesT

... All models have good accuracy & coverage

... BayesT has better precision

... BayesT yields higher statistical power
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Scaled Average Bioequivalence: Statistical Model

Conventional model for 2-treatment, 2-sequence, 4-period replicate
crossover study

yijk = µ+ ζh + sij + πm + τj + eijk

yijk log-bioavailability for the kth replicate of subject i and
formulation j = T ,R; k = 1, 2

µ overall mean

sij random effect of subject i and formulation j

ζh (sequence), πm (period), τj (treatment): fixed effects

eijk residual
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Scaled Average Bioequivalence: Statistical Model

Variance-covariance matrix of the si = (siR , siT )′:

cov(si ) = ΣB =

(
σ2
BR ρσBRσBT

ρσBRσBT σ2
BT

)

Between-subject variances:

var(siR) = σ2
BR

var(siT ) = σ2
BT

σ2
D = var(siR − siT ) = (σ2

BR + σ2
BT − 2ρσBRσBT ):

subject-by-formulation interaction variance

Within-subject variances:

var(eiRk) = σ2
WR

var(eiTk) = σ2
WT
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Scaled Average Bioequivalence: Statistical Model

Linearized reference-scaled average bioequivalence (RSABE)
criterion:

θ = τ2 − k2σ2
WR

where

k = log(1.25)
σ0

Choose: σ0 = 0.25
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Scaled Average Bioequivalence: Statistical Model

Statistical decision rule

Two formulations are bioequivalent if the one-sided 95% upper
confidence limit for θ is below zero
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Scaled Average Bioequivalence: Types of Outlier

1 Subject outlier (between-subject outlier):

For subject i , all 4 observations yiT1, yiT2, yiR1, yiR2 are
extreme, in the same direction
Could be modeled as a mean shift in si

Again: has no consequences since a mean shift in si does not
affect point or interval estimate of relative bioavailability

2 Subject-by-formulation outlier (within-subject but
between-replicate outlier):

For subject i , the replicates yiT1 and yiT2, jointly, are different
from the replicates yiR1 and yiR2

For subject i the within-subject, between replicate difference
(yiT1 + yiT2)− (yiR1 + yiR2) is extreme
Could be modeled as a mean shift in either siT or siR
Can severely affect results of the bioequivalence test
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Scaled Average Bioequivalence: Types of Outlier

3 Single data point outlier (within-subject, within-replicate
outlier):

For subject i , one of the four observations yiT1, yiT2, yiR1, or
yiR2 is extreme
At least one of the within-subject, within-replicate differences
(yiT1 − yiT2) or (yiR1 − yiR2) is extreme
Can severely affect the results of the bioequivalence test

Schall, Ring, Endrenyi (2010). Residuals and outliers in replicate design crossover studies. J. Biopharm. Stat.
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Scaled Average Bioequivalence: QQ and Residual Plots

Figure: Study 1a – Conditional Residuals: AUC (Slide 58)
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Scaled Average Bioequivalence: QQ and Residual Plots

Figure: Study 1a: sDT – Residuals: AUC
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Scaled Average Bioequivalence: QQ and Residual Plots

Figure: Study 1a: sDR – Residuals: AUC
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Scaled Average Bioequivalence: QQ and Residual Plots

Figure: Study 1a: sSF – Residuals: AUC
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Scaled Average Bioequivalence: QQ and Residual Plots

Figure: Study 1a: sS – Residuals: AUC
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Scaled Average Bioequivalence: QQ and Residual Plots

Figure: Study 7 – Conditional Residuals: Cmax (Slide 58)

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

−3 −2 −1 0 1 2 3

−
2

−
1

0
1

2

Quantile of Standard Normal Distribution

S
tu

de
nt

iz
ed

 R
es

id
ua

l

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

● ●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●

3.0 3.5 4.0 4.5 5.0

−
2

−
1

0
1

2

Fitted Value

S
tu

de
nt

iz
ed

 R
es

id
ua

l

87 / 111



Scaled Average Bioequivalence: QQ and Residual Plots

Figure: Study 7: sDT – Residuals: Cmax
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Scaled Average Bioequivalence: QQ and Residual Plots

Figure: Study 7: sDR – Residuals: Cmax
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Scaled Average Bioequivalence: QQ and Residual Plots

Figure: Study 7: sSF – Residuals: Cmax
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Scaled Average Bioequivalence: QQ and Residual Plots

Figure: Study 7: sS – Residuals: Cmax
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Scaled Average Bioequivalence: Robust Methodology

Robust methodology

Achieve robustness by:

1 Use standard model for replicate-design crossover study (see
above)

2 But specify heavy-tailed distributions for residuals (and subject
effects)

3 Here, use Student t distributions with low degrees of freedom
4 (Again: Preferable to estimate the degrees of freedom)

Fit the model using a Bayesian approach

Compare Student t with normal model (both Bayes)
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Scaled Average Bioequivalence: Robust Methodology

Residuals and random effects

BayesT

Student t distribution accommodates heavy tails/outliers

... eijk ∼ t
(

0, σ2∗
Wj , vWj

)
where σ2

Wj =
vWj

vWj−2σ
2∗
Wj

... si ∼ t (0,Σ∗
B , vB) where ΣB = vB

vB−2Σ
∗
B

... vWj , vBj ⇒ degrees of freedom

BayesN

Normal distribution – not robust to outliers
... eijk ∼ Normal

(
0, σ2∗

Wj

)
where σ2

Wj = σ2∗
Wj

... si ∼ Normal(0,Σ∗
B , vB) where ΣB = Σ∗

B
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Scaled Average Bioequivalence: Robust Methodology

Prior specification

Vague priors

... µ, ζh, πm, τj ∼ N (0, 10000)

... σ−2∗
Wj ∼ Gamma(0.0001, 0.0001)

... vWj , vB ∼ Normal(0, 10000)T (2,∞) (half-normal)

... Σ∗ ∼ MGH-t (10000, 2) (matrix generalized half-t)
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Scaled Average Bioequivalence: Robust Methodology

Implementation

Fit model using JAGS via R package runjags

Student t: Mixture of normal & gamma distribution

Speeds up convergence
Matrix generalized half-t for covariance matrix: Huang &
Wand (2013)
Most priors are conjugate ⇒ fast convergence

RSABE ⇒ calculate:

Posterior estimate of θ
Upper limit of one-sided 95% Bayesian credibility (BCI)
interval for θ

DIC statistic: Discriminate between BayesN & BayesT

Huang & Wand (2013). Simple marginally noninformative prior distributions for covariance matrices. Bayesian

Anal.
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Scaled Average Bioequivalence: Data Pool

Pool of datasets from 2-sequence, 2-treatment, 4-period replicate
designs:

7 studies

... for both AUC and Cmax

... Study 1a: Schall, Ring, Endrenyi (2010)

... Study 1a: R contains outliers, whereas T does not

... Study 1b: Study 1a’s T and R labels reversed
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Need for Robust Methodology: Confidence Intervals and Degrees of Freedom

Table: AUC and Cmax: UCLs of RSABE and Estimates of DF

Estimates of DF
UCL of RSABE Residual

Study Parameter REML BayesN BayesT Test Reference Random

1a AUC† -0.0294 -0.0270 -0.0126 71.6 3.2 59.3
Cmax

† -0.0262 -0.0155 -0.0108 68.3 4.0 78.4
1b AUC† -0.0091 -0.0065 -0.0107 3.2 71.5 63.2

Cmax
† -0.0190 -0.0087 -0.0201 4.0 68.9 76.9

2 AUC† -0.1388 -0.1283 -0.1245 39.0 53.8 71.6
Cmax

† -0.1328 -0.1249 -0.1191 18.5 44.4 72.0
3 AUC† -0.1382 -0.1295 -0.1228 17.8 52.9 70.7

Cmax
† -0.1321 -0.1251 -0.1204 31.8 39.6 66.1

4 AUC† -0.1757 -0.1572 -0.1510 38.3 4.2 71.2
Cmax

† -0.2234 -0.2003 -0.1926 31.2 2.9 55.5
5 AUC† -0.0085 -0.0066 -0.0065 13.1 69.0 73.5

Cmax
† -0.0070 -0.0055 -0.0059 7.9 76.4 75.5

6 AUC† -0.0013 0.0009 -0.0007 29.8 4.6 55.3
Cmax

† -0.0009 0.0011 0.0009 28.5 65.5 59.9
7 AUC -0.0517 -0.0471 -0.0474 62.6 63.6 68.1

Cmax 0.0821 0.1055 0.1060 79.1 76.8 79.2
†DIC statistic prefers BayesT over BayesN .
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Need for Robust Methodology: Confidence Intervals and Degrees of Freedom

Summary (need for robust methodology):

Degrees of freedom estimates for 2/8 studies (R treatment!)
are small for both AUC and Cmax

DIC prefers BayesT to BayesN in most cases

Bayesian CIs are generally somewhat wider than REML CIs

Reason:

Outliers/heavy tails for R treatment inflate the residual
variance of R

Leads to smaller scaling factor when robust methodology is
applied
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Method Comparison: Agreement Between Methods

Table: AUC and Cmax: RSABE Outcomes

Method
REML BayesN BayesT

Pass Fail Pass Fail Pass Fail Total
Method Outcome n (%) n (%) n (%) n (%) n (%) n (%) n (%)

REML Pass 13 (86.7) 2 (13.3) 14 (93.3) 1 (6.7) 15 (100.0)
Fail 0 (0.0) 1 (100.0) 0 (0.0) 1 (100.0) 1 (100.0)

BayesN Pass 13 (100.0) 0 (0.0) 13 (100.0) 0 (0.0) 13 (100.0)
Fail 2 (66.7) 1 (33.3) 1 (33.3) 2 (66.7) 3 (100.0)

BayesT Pass 14 (100.0) 0 (0.0) 13 (92.9) 1 (7.1) 14 (100.0)
Fail 1 (50.0) 1 (50.0) 0 (0.0) 2 (100.0) 2 (100.0)
Total 15 (93.8) 1 (6.3) 13 (81.3) 3 (18.8) 14 (87.5) 2 (12.5) 16 (100.0)

The DIC statistic preferred BayesT over BayesN in 14 out of 16 cases.
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Method Comparison: Agreement Between Methods

Summary (agreement between methods):

Good agreement between REML and Bayes methods, in
particular REML with BayesT
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