Robust Methods for Assessment of Average and Scaled Average Bioequivalence

Robert Schall¹ & Divan Aristo Burger²

October 2019

¹Dept. of Mathematical Statistics and Actuarial Science, University of the Free State, Bloemfontein, South Africa
²Department of Statistics, University of Pretoria, Pretoria, South Africa

Objectives

1 Propose a flexible robust methodology for bioequivalence

- 2 Evaluate/motivate need for robust methods in bioequivalence
- 3 Compare robust and conventional methods empirically:
 - Apply methodology to a reasonably large data pool of conventional bioequivalence studies
 - Apply methodology to a number of replicate design bioequivalence studies

Do the above for:

- Conventional average bioequivalence assessment
 Data from typical 2 × 2 crossover studies
- Reference-scaled average bioequivalence assessment
 - Data from replicate design crossover studies

Objectives

1 Propose a flexible robust methodology for bioequivalence

2 Evaluate/motivate need for robust methods in bioequivalence

- 3 Compare robust and conventional methods empirically:
 - Apply methodology to a reasonably large data pool of conventional bioequivalence studies
 - Apply methodology to a number of replicate design bioequivalence studies

Do the above for:

- Conventional average bioequivalence assessment
 Data from typical 2 × 2 crossover studies
- Reference-scaled average bioequivalence assessment
 - Data from replicate design crossover studies

Objectives

- **1** Propose a flexible robust methodology for bioequivalence
- 2 Evaluate/motivate need for robust methods in bioequivalence
- 3 Compare robust and conventional methods empirically:
 - Apply methodology to a reasonably large data pool of conventional bioequivalence studies
 - Apply methodology to a number of replicate design bioequivalence studies

Do the above for:

- Conventional average bioequivalence assessment
 - Data from typical 2 × 2 crossover studies
- Reference-scaled average bioequivalence assessment
 - Data from replicate design crossover studies

Violation of usual assumptions for "normal theory" analysis

- Outliers
- Heavy-tailed distribution (including outliers)
- Skewness of the distribution

Replace the normal distribution by the Student t distribution:

- Accommodates heavy tails/outliers
 - Small degrees of freedom
- Accommodates skewness
 - If skew Student t distribution is used
 - (Only for larger datasets)

Bayesian approach:

- Noninformative priors
- Good frequentist properties
- Robust approach successfully applied even for hierarchical nonlinear models

Burger & Schall (2018). Robust fit of Bayesian mixed effects regression models with application to colony forming unit count in tuberculosis research. *Stat. Med.*

Replace the normal distribution by the Student t distribution:

- Accommodates heavy tails/outliers
 - Small degrees of freedom
- Accommodates skewness
 - If skew Student t distribution is used
 - (Only for larger datasets)

Bayesian approach:

- Noninformative priors
- Good frequentist properties
- Robust approach successfully applied even for hierarchical nonlinear models

Burger & Schall (2018). Robust fit of Bayesian mixed effects regression models with application to colony forming unit count in tuberculosis research. *Stat. Med.*

イロン 不得 とうほう イロン 二日

7/111

Replace the normal distribution by the Student t distribution:

- Accommodates heavy tails/outliers
 - Small degrees of freedom
- Accommodates skewness
 - If skew Student t distribution is used
 - (Only for larger datasets)

Bayesian approach:

- Noninformative priors
- Good frequentist properties
- Robust approach successfully applied even for hierarchical nonlinear models

Burger & Schall (2018). Robust fit of Bayesian mixed effects regression models with application to colony forming unit count in tuberculosis research. *Stat. Med.*

Previous literature:

- De Souza et al. (2016):
 - Univariate and bivariate models \Rightarrow 2 \times 2 crossover designs
 - Extended generalized gamma distribution
 - Skew Student t distribution
- Ghosh & Ntzoufras (2005):
 Population and individual bioequivalence
 Student t

De Souza et al. (2016). The use of asymmetric distributions in average bioequivalence. Stat. Med.

Ghosh & Ntzoufras (2005). Testing population and individual bioequivalence: a hierarchical Bayesian approach

<□> <圕> <≧> < ≧> < ≧> < ≧> < ≧ 9/111

Previous literature:

- De Souza et al. (2016):
 - Univariate and bivariate models \Rightarrow 2 \times 2 crossover designs
 - Extended generalized gamma distribution
 - Skew Student t distribution
- Ghosh & Ntzoufras (2005):
 - Population and individual bioequivalence
 - Student t

De Souza et al. (2016). The use of asymmetric distributions in average bioequivalence. Stat. Med.

Ghosh & Ntzoufras (2005). Testing population and individual bioequivalence: a hierarchical Bayesian approach

Conventional model for standard 2×2 crossover study

$$y_{ij} = \mu + s_i + \zeta_h + \pi_m + \tau_j + e_{ij}$$

- y_{ij} log-bioavailability for subject *i* and formulation j = T, R
- μ overall mean
- *s_i* random effects (subject)
- ζ_h (sequence), π_m (period), τ_j (treatment): fixed effects
- e_{ii} residual
- $\operatorname{var}(s_i) = \sigma_B^2$ and $\operatorname{var}(e_{ij}) = \sigma_W^2$

Conventional model for standard 2×2 crossover study

$$y_{ij} = \mu + s_i + \zeta_h + \pi_m + \tau_j + e_{ij}$$

- y_{ij} log-bioavailability for subject *i* and formulation j = T, R
- μ overall mean
- *s_i* random effects (subject)
- ζ_h (sequence), π_m (period), τ_j (treatment): fixed effects
- *e_{ij}* residual
- $\operatorname{var}(s_i) = \sigma_B^2$ and $\operatorname{var}(e_{ij}) = \sigma_W^2$

Conventional model for standard 2×2 crossover study

$$y_{ij} = \mu + s_i + \zeta_h + \pi_m + \tau_j + e_{ij}$$

- y_{ij} log-bioavailability for subject *i* and formulation j = T, R
- μ overall mean
- *s_i* random effects (subject)
- ζ_h (sequence), π_m (period), τ_j (treatment): fixed effects

■ *e_{ij}* residual

•
$$\operatorname{var}(s_i) = \sigma_B^2$$
 and $\operatorname{var}(e_{ij}) = \sigma_W^2$

Statistical decision rule

Calculate 90% two-sided confidence interval (CI) for $\exp(\tau_T - \tau_R)$

ABE concluded if the CI falls in bioequivalence range 0.80 and 1.25

- For subject *i*, both observations, *y_{iT}* and *y_{iR}*, are extreme, in the same direction
- Could be modeled as a mean shift in the subject effect s_i
- No consequences since mean shift in s_i has no effect on point or interval estimates of relative bioavailability
- **2** Single data point outlier (within-subject outlier):
 - For subject *i*, either *y_{iT}* or *y_{iR}*, or both (but in opposite directions), is extreme
 - ... within-subject difference $y_{iT} y_{iR}$ is extreme
 - Can severely affect results of the bioequivalence test

- For subject *i*, both observations, *y_{iT}* and *y_{iR}*, are extreme, in the same direction
- Could be modeled as a mean shift in the subject effect s_i
- No consequences since mean shift in s_i has no effect on point or interval estimates of relative bioavailability

2 Single data point outlier (within-subject outlier):

- For subject *i*, either *y*_{*i*T} or *y*_{*i*R}, or both (but in opposite directions), is extreme
- ... within-subject difference $y_{iT} y_{iR}$ is extreme
- Can severely affect results of the bioequivalence test

- For subject *i*, both observations, *y_{iT}* and *y_{iR}*, are extreme, in the same direction
- Could be modeled as a mean shift in the subject effect s_i
- No consequences since mean shift in s_i has no effect on point or interval estimates of relative bioavailability

2 Single data point outlier (within-subject outlier):

- For subject *i*, either *y_{iT}* or *y_{iR}*, or both (but in opposite directions), is extreme
- ... within-subject difference $y_{iT} y_{iR}$ is extreme
- Can severely affect results of the bioequivalence test

- For subject *i*, both observations, *y_{iT}* and *y_{iR}*, are extreme, in the same direction
- Could be modeled as a mean shift in the subject effect s_i
- No consequences since mean shift in s_i has no effect on point or interval estimates of relative bioavailability
- **2** Single data point outlier (within-subject outlier):
 - For subject *i*, either *y*_{*i*T} or *y*_{*i*R}, or both (but in opposite directions), is extreme
 - ... within-subject difference $y_{iT} y_{iR}$ is extreme
 - Can severely affect results of the bioequivalence test

- Achieve robustness by:
 - **1** Use standard model for 2×2 crossover study (see above)
 - 2 But specify heavy-tailed distributions for residuals (and subject effects)
 - 3 Here, use Student t distributions with low degrees of freedom
 - (Preferable to estimate the degrees of freedom, but can also be fixed)
- Fit the model using a Bayesian approach
- **Here:** Compare Student *t* with normal model (both Bayes)

- Achieve robustness by:
 - **1** Use standard model for 2×2 crossover study (see above)
 - 2 But specify heavy-tailed distributions for residuals (and subject effects)
 - 3 Here, use Student t distributions with low degrees of freedom
 - (Preferable to estimate the degrees of freedom, but can also be fixed)
- Fit the model using a Bayesian approach
- **Here:** Compare Student *t* with normal model (both Bayes)

- Achieve robustness by:
 - **1** Use standard model for 2×2 crossover study (see above)
 - 2 But specify heavy-tailed distributions for residuals (and subject effects)
 - 3 Here, use Student t distributions with low degrees of freedom
 - (Preferable to estimate the degrees of freedom, but can also be fixed)
- Fit the model using a Bayesian approach
- **Here:** Compare Student *t* with normal model (both Bayes)

- Achieve robustness by:
 - **1** Use standard model for 2×2 crossover study (see above)
 - 2 But specify heavy-tailed distributions for residuals (and subject effects)
 - 3 Here, use Student t distributions with low degrees of freedom
 - (Preferable to estimate the degrees of freedom, but can also be fixed)
- Fit the model using a Bayesian approach
- Here: Compare Student *t* with normal model (both Bayes)

Residuals and random effects

Bayes_T

• Student *t* distribution accommodates heavy tails/outliers • ... $e_{ij} \sim t (0, \sigma_W^{2*}, v_W)$ where $\sigma_W^2 = \frac{v_W}{v_W - 2} \sigma_W^{2*}$ • ... $s_i \sim t (0, \sigma_B^{2*}, v_B)$ where $\sigma_B^2 = \frac{v_B}{v_B - 2} \sigma_B^{2*}$ • ... $v_W, v_B \Rightarrow$ degrees of freedom

Bayes_N

Normal distribution – not robust to outliers ... $e_{ij} \sim \text{Normal}(0, \sigma_W^{2*})$ where $\sigma_W^2 = \sigma_W^{2*}$... $s_i \sim \text{Normal}(0, \sigma_B^{2*})$ where $\sigma_B^2 = \sigma_B^{2*}$

Residuals and random effects

Bayes_T

• Student *t* distribution accommodates heavy tails/outliers • ... $e_{ij} \sim t (0, \sigma_W^{2*}, v_W)$ where $\sigma_W^2 = \frac{v_W}{v_W - 2} \sigma_W^{2*}$ • ... $s_i \sim t (0, \sigma_B^{2*}, v_B)$ where $\sigma_B^2 = \frac{v_B}{v_B - 2} \sigma_B^{2*}$ • ... $v_W, v_B \Rightarrow$ degrees of freedom

Bayes_N

Normal distribution – not robust to outliers ... $e_{ij} \sim \text{Normal}(0, \sigma_W^{2*})$ where $\sigma_W^2 = \sigma_W^{2*}$... $s_i \sim \text{Normal}(0, \sigma_B^{2*})$ where $\sigma_B^2 = \sigma_B^{2*}$

Prior specifications

- Vague priors
- ... μ , ζ_h , π_m , $\tau_j \sim N(0, 10000)$
- ... $\sigma_W^{-2*} \sim \text{Gamma}(0.0001, 0.0001)$
- ... v_W , $v_B \sim \text{Normal}(0, 10000) T(2, \infty)$ (half-normal)
- ... $\sigma_B^* \sim t(0, 10000, 2) T(0, \infty)$ (half-t)

- Fit model using JAGS via R package runjags
- Student t: Mixture of normal & gamma distribution
 - Speeds up convergence
 - Most priors are conjugate ⇒ fast convergence
- ABE \Rightarrow calculate:
 - Posterior estimate of $\exp(\tau_T \tau_R)$
 - 90% highest posterior density (HPD) interval: LCL and UCL
- Deviance information criterion (DIC): Discriminate between Bayes_N & Bayes_T

- Fit model using JAGS via R package runjags
- Student t: Mixture of normal & gamma distribution
 - Speeds up convergence
 - Most priors are conjugate \Rightarrow fast convergence
- ABE \Rightarrow calculate:
 - Posterior estimate of $\exp(\tau_T \tau_R)$
 - 90% highest posterior density (HPD) interval: LCL and UCL
- Deviance information criterion (DIC): Discriminate between Bayes_N & Bayes_T

- Fit model using JAGS via R package runjags
- Student t: Mixture of normal & gamma distribution
 - Speeds up convergence
 - Most priors are conjugate ⇒ fast convergence
- ABE \Rightarrow calculate:
 - Posterior estimate of $\exp(\tau_T \tau_R)$
 - 90% highest posterior density (HPD) interval: LCL and UCL
- Deviance information criterion (DIC): Discriminate between Bayes_N & Bayes_T

- Fit model using JAGS via R package runjags
- Student t: Mixture of normal & gamma distribution
 - Speeds up convergence
 - Most priors are conjugate ⇒ fast convergence
- ABE \Rightarrow calculate:
 - Posterior estimate of $\exp(\tau_T \tau_R)$
 - 90% highest posterior density (HPD) interval: LCL and UCL
- Deviance information criterion (DIC): Discriminate between Bayes_N & Bayes_T

Pool of datasets from conventional 2×2 bioequivalence studies:

- 65 datasets of T/R comparisons
- \blacksquare ... for both AUC and C_{max}

Schall (2012). The empirical coverage of confidence intervals: Point estimates and confidence intervals for confidence levels. *Biometrical J.*

Need for Robust Methodology: Empirical Study

Fit Bayes_T model to each dataset in the data pool:

- Estimate degrees of freedom of Student t distribution
- Compare with conventional REML & HL methods:
 - Shifts in point and interval estimates
 - Confidence interval lengths

Need for Robust Methodology: Empirical Study

Fit Bayes_T model to each dataset in the data pool:

- Estimate degrees of freedom of Student t distribution
- Compare with conventional REML & HL methods:
 - Shifts in point and interval estimates
 - Confidence interval lengths

Figure: Bayes_T: Estimates of Residual DF – AUC

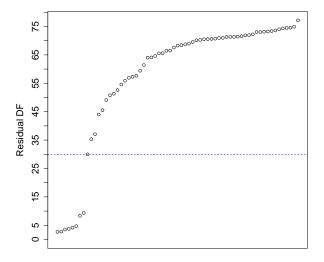


Figure: Bayes_T: Estimates of Random DF – AUC

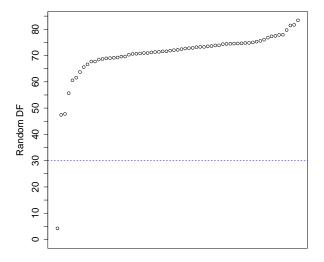


Figure: Bayes_T: Estimates of Residual DF – C_{max}

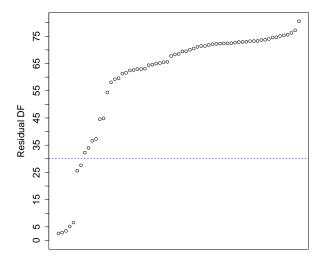
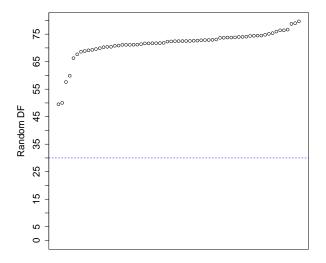


Figure: Bayes_T: Estimates of Random DF – C_{max}



- 8/65 datasets for AUC and 5/65 datasets for C_{max} suggest a "heavy tailed" distribution of the residuals
- Suggests robust methodology might be needed in a small but non-negligible proportion of studies
- (Data pool possibly biased towards "neat" datasets / "successful" studies)

- Heavy tails in subject effect distribution are rare in this data pool (homogeneous subject populations?)
- In any case irrelevant for bioequivalence assessment

- 8/65 datasets for AUC and 5/65 datasets for C_{max} suggest a "heavy tailed" distribution of the residuals
- Suggests robust methodology might be needed in a small but non-negligible proportion of studies
- (Data pool possibly biased towards "neat" datasets / "successful" studies)

- Heavy tails in subject effect distribution are rare in this data pool (homogeneous subject populations?)
- In any case irrelevant for bioequivalence assessment

- 8/65 datasets for AUC and 5/65 datasets for C_{max} suggest a "heavy tailed" distribution of the residuals
- Suggests robust methodology might be needed in a small but non-negligible proportion of studies
- (Data pool possibly biased towards "neat" datasets / "successful" studies)

- Heavy tails in subject effect distribution are rare in this data pool (homogeneous subject populations?)
- In any case irrelevant for bioequivalence assessment

- 8/65 datasets for AUC and 5/65 datasets for C_{max} suggest a "heavy tailed" distribution of the residuals
- Suggests robust methodology might be needed in a small but non-negligible proportion of studies
- (Data pool possibly biased towards "neat" datasets / "successful" studies)

- Heavy tails in subject effect distribution are rare in this data pool (homogeneous subject populations?)
- In any case irrelevant for bioequivalence assessment

Figure: Bayes_T vs REML: eCDF of Shift in Estimates of ABE – AUC

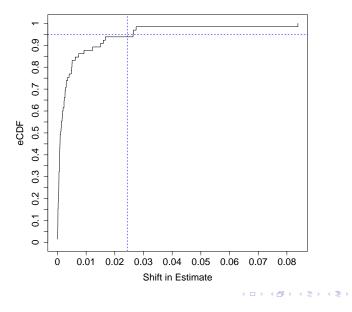


Figure: Bayes_T vs REML: eCDF of Shift in LCLs of ABE – AUC

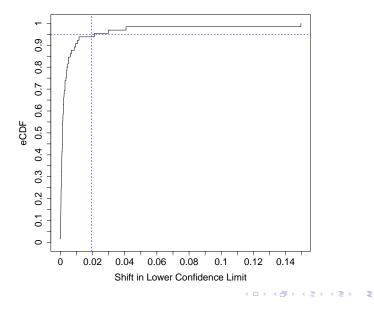


Figure: Bayes_T vs REML: eCDF of Shift in UCLs of ABE – AUC

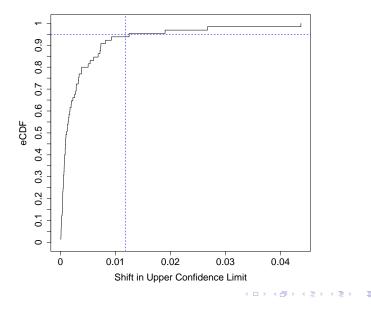


Figure: Bayes_T vs REML: eCDF of Shift in Point Estimate of ABE – C_{max}

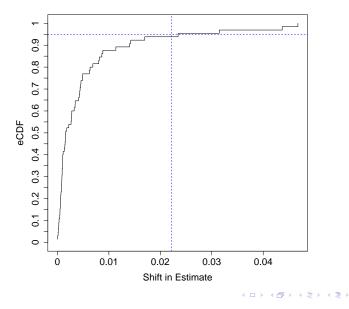


Figure: Bayes_T vs REML: eCDF of Shift in LCL of ABE – C_{max}

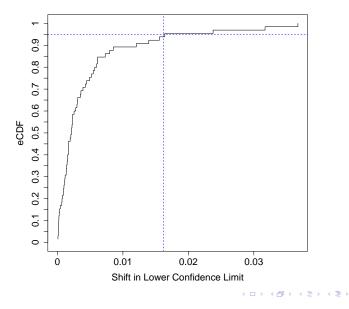
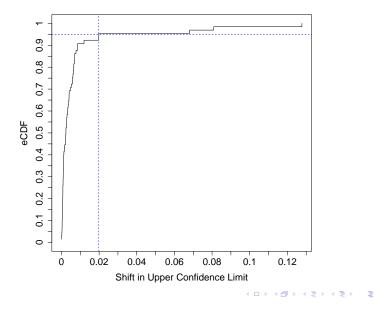


Figure: Bayes_T vs REML: eCDF of Shift in UCL of ABE – C_{max}



Summary (shift in point and interval estimates of GMR):

- \blacksquare In 5% of datasets the point estimate and confidence limits shift by \pm 0.02 units (AUC & C_{max})
- Suggests robust methodology might be needed in a small but non-negligible proportion of studies
- (Again note possible bias towards "neat" datasets / "successful" studies)

Summary (shift in point and interval estimates of GMR):

- \blacksquare In 5% of datasets the point estimate and confidence limits shift by \pm 0.02 units (AUC & C_{max})
- Suggests robust methodology might be needed in a small but non-negligible proportion of studies
- (Again note possible bias towards "neat" datasets / "successful" studies)

Relative Confidence Interval Widths: Plot

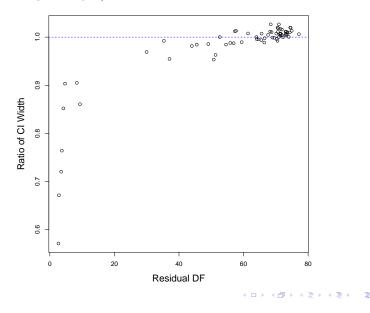
- Relative CI widths against (estimated) residual degrees of freedom
- Relative CI widths against "need for robustness"

Relative Confidence Interval Widths: Plot

- Relative CI widths against (estimated) residual degrees of freedom
- Relative CI widths against "need for robustness"

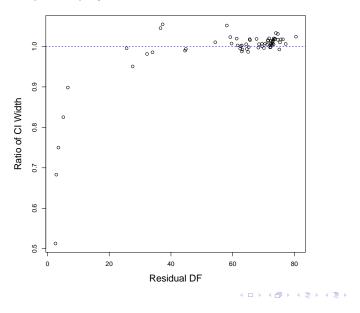
Need for Robust Methodology: Relative Confidence Interval Widths

Figure: Bayes_T vs REML: Ratio of CI Widths – AUC



Need for Robust Methodology: Relative Confidence Interval Widths

Figure: Bayes_T vs REML: Ratio of CI Widths – C_{max}



Summary (ratio of CI widths):

- Robust CIs are narrower than non-robust CIs when outliers are present (distribution is heavy-tailed)
- Robust CIs are similar to non-robust CIs when no outliers are present (distribution is not heavy-tailed)

Reason:

Outliers/heavy tails inflate the residual variance

Summary (ratio of CI widths):

- Robust CIs are narrower than non-robust CIs when outliers are present (distribution is heavy-tailed)
- Robust CIs are similar to non-robust CIs when no outliers are present (distribution is not heavy-tailed)

Reason:

Outliers/heavy tails inflate the residual variance

Summary (ratio of CI widths):

- Robust Cls are narrower than non-robust Cls when outliers are present (distribution is heavy-tailed)
- Robust CIs are similar to non-robust CIs when no outliers are present (distribution is not heavy-tailed)

Reason:

Outliers/heavy tails inflate the residual variance

Table:	AUC and	I C _{max} :	ABE	Outcomes
rable.	AUC and	Cmax.	ADL	Outcomes

									Me	thod									
			REML			HL			Bayes _N			Bayes T							
		F	Pass		Fail	Р	ass		Fail		ass		Fail		ass		Fail		otal
Method	Outcome	n	(%)	n	(%)	n	(%) n	(%)	n	(%)	n	(%)	n	(%)	n	(%)	n	(%)
REML	Pass					117	(98.3) 2	(1.7)	118	(99.2)	1	(0.8)	118	(99.2)	1	(0.8)	119	(100.0)
	Fail					4	(36.4) 7	(63.6)	0	(0.0)	11	(100.0)	1	(9.1)	10	(90.9)	11	(100.0)
HL	Pass	117	(96.7)	4	(3.3)					116	(95.9)	5	(4.1)	118	(97.5)	3	(2.5)	121	(100.0)
	Fail	2	(22.2)	7	(77.8)					2	(22.2)	7	(77.8)	1	(11.1)	8	(88.9)	9	(100.0)
Bayes _N	Pass	118	(100.0)	0	(0.0)	116	(98.3) 2	(1.7)					117	(99.2)	1	(0.8)	118	(100.0)
	Fail	1	(8.3)	11	(91.7)	5	(41.7) 7	(58.3)					2	(16.7)	10	(83.3)	12	(100.0)
$Bayes_T$	Pass	118	(99.2)	1	(0.8)	118	(99.2) 1	(0.8)	117	(98.3)	2	(1.7)					119	(100.0)
	Fail	1	(9.1)	10	(90.9)	3	(27.3) 8	(72.7)	1	(9.1)	10	(90.9)					11	(100.0)
	Total	119	(91.5)	11	(8.5)	121	(93.1	9 ((6.9)	118	(90.8)	12	(9.2)	119	(91.5)	11	(8.5)	130	(100.0)

The DIC statistic preferred $Bayes_T$ over $Bayes_N$ in 44 out of 130 cases.

Summary (method comparison):

- Bayes_T method agrees well with REML analysis
- Bayes_T method agrees better with REML analysis than HL method

DIC statistic prefers Bayes_T to Bayes_N in about a third of cases

Summary (method comparison):

- Bayes_T method agrees well with REML analysis
- Bayes_T method agrees better with REML analysis than HL method

DIC statistic prefers Bayes_T to Bayes_N in about a third of cases

Summary (method comparison):

- Bayes_T method agrees well with REML analysis
- Bayes_T method agrees better with REML analysis than HL method

DIC statistic prefers Bayes_T to Bayes_N in about a third of cases

- Model performance
 - Bias
 - RMSE
 - Interval coverage
- Statistical power
- Parameters chosen such that ABE ratio is:
 - 1.00
 - 1.10
 - 1.20
- Data simulated for $Bayes_N \& Bayes_T$
- ... for Bayes_T: $v_W = 2.5$, $v_B = 15$ (Heavy tailed)

- Model performance
 - Bias
 - RMSE
 - Interval coverage
- Statistical power
- Parameters chosen such that ABE ratio is:
 - 1.00
 - 1.10
 - 1.20
- Data simulated for $Bayes_N \& Bayes_T$
- ... for Bayes_T: $v_W = 2.5$, $v_B = 15$ (Heavy tailed)

- Model performance
 - Bias
 - RMSE
 - Interval coverage
- Statistical power
- Parameters chosen such that ABE ratio is:
 - **1**.00
 - **1**.10
 - 1.20
- Data simulated for $Bayes_N \& Bayes_T$
- ... for Bayes_T: $v_W = 2.5$, $v_B = 15$ (Heavy tailed)

- Model performance
 - Bias
 - RMSE
 - Interval coverage
- Statistical power
- Parameters chosen such that ABE ratio is:
 - **1**.00
 - **1**.10
 - 1.20
- Data simulated for $Bayes_N \& Bayes_T$
- ... for Bayes_T: $v_W = 2.5$, $v_B = 15$ (Heavy tailed)

Table: Simulation Study: Data from Normal Distribution

Method	Bias	RMSE	Coverage	Power
REML	0.0001	0.0199	89.9	100.0
$Bayes_N$	0.0001	0.0199	89.5	100.0
$Bayes_T$	0.0001	0.0199	89.6	100.0
REML	-0.0003	0.0221	89.4	100.0
$Bayes_N$	-0.0003	0.0221	89.4	100.0
$Bayes_T$	-0.0003	0.0221	89.3	100.0
REML	0.0002	0.0242	89.9	63.5
$Bayes_N$	0.0002	0.0242	90.0	64.1
$Bayes_T$	0.0001	0.0243	89.6	64.4
	REML Bayes _N Bayes _T REML Bayes _N REML Bayes _N	$\begin{array}{c c} {\sf REML} & 0.0001 \\ {\sf Bayes}_N & 0.0001 \\ {\sf Bayes}_T & 0.0001 \\ {\sf REML} & -0.0003 \\ {\sf Bayes}_N & -0.0003 \\ {\sf Bayes}_T & -0.0003 \\ {\sf REML} & 0.0002 \\ {\sf Bayes}_N & 0.0002 \end{array}$	$\begin{array}{c ccccc} {\sf REML} & 0.0001 & 0.0199 \\ {\sf Bayes}_N & 0.0001 & 0.0199 \\ {\sf Bayes}_T & 0.0001 & 0.0199 \\ {\sf REML} & -0.0003 & 0.0221 \\ {\sf Bayes}_N & -0.0003 & 0.0221 \\ {\sf Bayes}_T & -0.0003 & 0.0221 \\ {\sf REML} & 0.0002 & 0.0242 \\ {\sf Bayes}_N & 0.0002 & 0.0242 \\ \end{array}$	$\begin{array}{c cccccc} {\sf REML} & 0.0001 & 0.0199 & 89.9 \\ {\sf Bayes}_N & 0.0001 & 0.0199 & 89.5 \\ {\sf Bayes}_T & 0.0001 & 0.0199 & 89.6 \\ {\sf REML} & -0.0003 & 0.0221 & 89.4 \\ {\sf Bayes}_N & -0.0003 & 0.0221 & 89.4 \\ {\sf Bayes}_T & -0.0003 & 0.0221 & 89.3 \\ {\sf REML} & 0.0002 & 0.0242 & 89.9 \\ {\sf Bayes}_N & 0.0002 & 0.0242 & 90.0 \\ \end{array}$

Table: Simulation Study: Data from Student t Distribution

ABE	Method	Bias	RMSE	Coverage	Power
1.00	REML	-0.0007	0.0404	91.0	98.6
	$Bayes_N$	-0.0007	0.0404	91.3	98.7
	$Bayes_T$	-0.0001	0.0290	92.3	100.0
1.10	REML	-0.0002	0.0524	89.5	93.1
	Bayes _N	-0.0002	0.0524	89.8	93.4
	$Bayes_T$	-0.0017	0.0339	90.0	99.4
1.20	REML	0.0016	0.0515	90.8	29.6
	$Bayes_N$	0.0016	0.0515	91.3	31.2
	$Bayes_T$	0.0006	0.0358	91.7	36.3

Summary:

- Data simulated from Bayes_N
- ... All models have good accuracy, precision & coverage
- ... All models yield similar statistical power
- Data simulated from Bayes_T
- ... All models have good accuracy & coverage
- ... Bayes $_{\mathcal{T}}$ has better precision
- ... Bayes $_{\mathcal{T}}$ yields higher statistical power

Summary:

- Data simulated from Bayes_N
- ... All models have good accuracy, precision & coverage
- ... All models yield similar statistical power
- Data simulated from Bayes_T
- ... All models have good accuracy & coverage
- ... Bayes_T has better precision
- ... Bayes $_{\mathcal{T}}$ yields higher statistical power

Conventional model for 2-treatment, 2-sequence, 4-period replicate crossover study

$$y_{ijk} = \mu + \zeta_h + s_{ij} + \pi_m + \tau_j + e_{ijk}$$

y_{ijk} log-bioavailability for the kth replicate of subject i and formulation j = T, R; k = 1, 2

• μ overall mean

- *s_{ij}* random effect of subject *i* and formulation *j*
- ζ_h (sequence), π_m (period), τ_j (treatment): fixed effects

■ *e_{ijk}* residual

Conventional model for 2-treatment, 2-sequence, 4-period replicate crossover study

$$y_{ijk} = \mu + \zeta_h + s_{ij} + \pi_m + \tau_j + e_{ijk}$$

- y_{ijk} log-bioavailability for the kth replicate of subject i and formulation j = T, R; k = 1, 2
- μ overall mean
- *s_{ij}* random effect of subject *i* and formulation *j*
- ζ_h (sequence), π_m (period), τ_j (treatment): fixed effects
- *e_{ijk}* residual

• Variance-covariance matrix of the $s_i = (s_{iR}, s_{iT})'$:

$$\operatorname{cov}(\boldsymbol{s}_i) = \boldsymbol{\Sigma}_B = \begin{pmatrix} \sigma_{BR}^2 & \rho \sigma_{BR} \sigma_{BT} \\ \rho \sigma_{BR} \sigma_{BT} & \sigma_{BT}^2 \end{pmatrix}$$

•
$$\operatorname{var}(s_{iR}) = \sigma_{BR}^2$$

• $\operatorname{var}(s_{iT}) = \sigma_{BT}^2$
• $\sigma_D^2 = \operatorname{var}(s_{iR} - s_{iT}) = (\sigma_{BR}^2 + \sigma_{BT}^2 - 2\rho\sigma_{BR}\sigma_{BT})$
subject-by-formulation interaction variance

Within-subject variances:

•
$$\operatorname{var}(e_{iRk}) = \sigma_{WR}^2$$

• $\operatorname{var}(e_{iTk}) = \sigma_{WT}^2$

• Variance-covariance matrix of the $s_i = (s_{iR}, s_{iT})'$:

$$\operatorname{cov}(\boldsymbol{s}_i) = \boldsymbol{\Sigma}_B = \begin{pmatrix} \sigma_{BR}^2 & \rho \sigma_{BR} \sigma_{BT} \\ \rho \sigma_{BR} \sigma_{BT} & \sigma_{BT}^2 \end{pmatrix}$$

Between-subject variances:

•
$$\operatorname{var}(s_{iR}) = \sigma_{BR}^2$$

• $\operatorname{var}(s_{iT}) = \sigma_{BT}^2$
• $\sigma_D^2 = \operatorname{var}(s_{iR} - s_{iT}) = (\sigma_{BR}^2 + \sigma_{BT}^2 - 2\rho\sigma_{BR}\sigma_{BT})$
subject-by-formulation interaction variance

•
$$\operatorname{var}(e_{iRk}) = \sigma_{WR}^2$$

• $\operatorname{var}(e_{iTk}) = \sigma_{WT}^2$

• Variance-covariance matrix of the $s_i = (s_{iR}, s_{iT})'$:

$$\operatorname{cov}(\boldsymbol{s}_i) = \boldsymbol{\Sigma}_B = \begin{pmatrix} \sigma_{BR}^2 & \rho \sigma_{BR} \sigma_{BT} \\ \rho \sigma_{BR} \sigma_{BT} & \sigma_{BT}^2 \end{pmatrix}$$

Between-subject variances:

•
$$\operatorname{var}(s_{iR}) = \sigma_{BR}^2$$

• $\operatorname{var}(s_{iT}) = \sigma_{BT}^2$
• $\sigma_D^2 = \operatorname{var}(s_{iR} - s_{iT}) = (\sigma_{BR}^2 + \sigma_{BT}^2 - 2\rho\sigma_{BR}\sigma_{BT})$:
subject-by-formulation interaction variance

Within-subject variances:

•
$$var(e_{iRk}) = \sigma_{WR}^2$$

• $var(e_{iTk}) = \sigma_{WT}^2$

Linearized reference-scaled average bioequivalence (RSABE) criterion:

$$\theta = \tau^2 - k^2 \sigma_{WR}^2$$

where

•
$$k = \frac{\log(1.25)}{\sigma_0}$$

• Choose: $\sigma_0 = 0.25$

<ロト < 団ト < 臣ト < 臣ト < 臣ト 臣 の Q (* 73/111

Statistical decision rule

Two formulations are bioequivalent if the one-sided 95% upper confidence limit for θ is below zero

- For subject *i*, all 4 observations *y*_{*i*T1}, *y*_{*i*T2}, *y*_{*i*R1}, *y*_{*i*R2} are extreme, in the same direction
- Could be modeled as a mean shift in s_i
- Again: has no consequences since a mean shift in s_i does not affect point or interval estimate of relative bioavailability
- 2 Subject-by-formulation outlier (within-subject but between-replicate outlier):
 - For subject *i*, the replicates y_{iT1} and y_{iT2} , jointly, are different from the replicates y_{iR1} and y_{iR2}
 - For subject *i* the within-subject, between replicate difference $(y_{iT1} + y_{iT2}) (y_{iR1} + y_{iR2})$ is extreme
 - Could be modeled as a mean shift in either s_{iT} or s_{iR}
 - Can severely affect results of the bioequivalence test

Scaled Average Bioequivalence: Types of Outlier

- For subject *i*, all 4 observations *y*_{*i*T1}, *y*_{*i*T2}, *y*_{*i*R1}, *y*_{*i*R2} are extreme, in the same direction
- Could be modeled as a mean shift in s_i
- Again: has no consequences since a mean shift in s_i does not affect point or interval estimate of relative bioavailability
- 2 Subject-by-formulation outlier (within-subject but between-replicate outlier):
 - For subject *i*, the replicates y_{iT1} and y_{iT2} , jointly, are different from the replicates y_{iR1} and y_{iR2}
 - For subject *i* the within-subject, between replicate difference $(y_{iT1} + y_{iT2}) (y_{iR1} + y_{iR2})$ is extreme
 - Could be modeled as a mean shift in either s_{iT} or s_{iR}
 - Can severely affect results of the bioequivalence test

Scaled Average Bioequivalence: Types of Outlier

- For subject *i*, all 4 observations *y*_{*i*T1}, *y*_{*i*T2}, *y*_{*i*R1}, *y*_{*i*R2} are extreme, in the same direction
- Could be modeled as a mean shift in s_i
- Again: has no consequences since a mean shift in s_i does not affect point or interval estimate of relative bioavailability
- Subject-by-formulation outlier (within-subject but between-replicate outlier):
 - For subject *i*, the replicates *y*_{*i*T1} and *y*_{*i*T2}, jointly, are different from the replicates *y*_{*i*R1} and *y*_{*i*R2}
 - For subject *i* the within-subject, between replicate difference $(y_{iT1} + y_{iT2}) (y_{iR1} + y_{iR2})$ is extreme
 - Could be modeled as a mean shift in either s_{iT} or s_{iR}
 - Can severely affect results of the bioequivalence test

- For subject *i*, all 4 observations *y*_{*i*T1}, *y*_{*i*T2}, *y*_{*i*R1}, *y*_{*i*R2} are extreme, in the same direction
- Could be modeled as a mean shift in s_i
- Again: has no consequences since a mean shift in s_i does not affect point or interval estimate of relative bioavailability
- Subject-by-formulation outlier (within-subject but between-replicate outlier):
 - For subject *i*, the replicates *y*_{*i*T1} and *y*_{*i*T2}, jointly, are different from the replicates *y*_{*i*R1} and *y*_{*i*R2}
 - For subject *i* the within-subject, between replicate difference $(y_{iT1} + y_{iT2}) (y_{iR1} + y_{iR2})$ is extreme
 - Could be modeled as a mean shift in either *s*_{*iT*} or *s*_{*iR*}
 - Can severely affect results of the bioequivalence test

- For subject *i*, all 4 observations *y*_{*i*T1}, *y*_{*i*T2}, *y*_{*i*R1}, *y*_{*i*R2} are extreme, in the same direction
- Could be modeled as a mean shift in s_i
- Again: has no consequences since a mean shift in s_i does not affect point or interval estimate of relative bioavailability
- Subject-by-formulation outlier (within-subject but between-replicate outlier):
 - For subject *i*, the replicates *y*_{*i*T1} and *y*_{*i*T2}, jointly, are different from the replicates *y*_{*i*R1} and *y*_{*i*R2}
 - For subject *i* the within-subject, between replicate difference $(y_{iT1} + y_{iT2}) (y_{iR1} + y_{iR2})$ is extreme
 - Could be modeled as a mean shift in either s_{iT} or s_{iR}
 - Can severely affect results of the bioequivalence test

3 Single data point outlier (within-subject, within-replicate outlier):

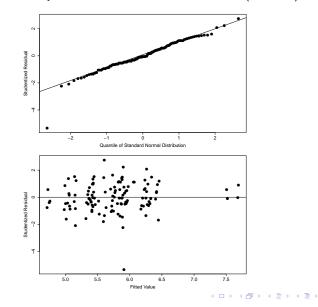
- For subject *i*, one of the four observations y_{iT1}, y_{iT2}, y_{iR1}, or y_{iR2} is extreme
- At least one of the within-subject, within-replicate differences $(y_{iT1} y_{iT2})$ or $(y_{iR1} y_{iR2})$ is extreme
- Can severely affect the results of the bioequivalence test

Schall, Ring, Endrenyi (2010). Residuals and outliers in replicate design crossover studies. J. Biopharm. Stat.

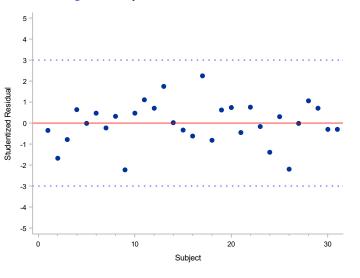
- Single data point outlier (within-subject, within-replicate outlier):
 - For subject *i*, one of the four observations y_{iT1}, y_{iT2}, y_{iR1}, or y_{iR2} is extreme
 - At least one of the within-subject, within-replicate differences $(y_{iT1} y_{iT2})$ or $(y_{iR1} y_{iR2})$ is extreme
 - Can severely affect the results of the bioequivalence test

Schall, Ring, Endrenyi (2010). Residuals and outliers in replicate design crossover studies. J. Biopharm. Stat.

Figure: Study 1a - Conditional Residuals: AUC (Slide 58)



82/111



83/111

イロト 不得 トイヨト イヨト

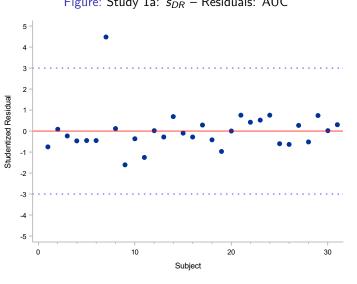


Figure: Study 1a: s_{DR} – Residuals: AUC

Image: A math .⊒ → 84/111

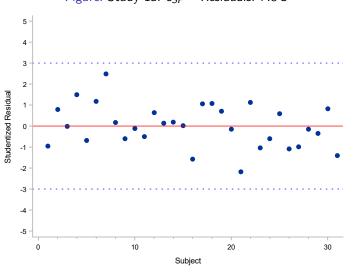


Figure: Study 1a: s_{SF} – Residuals: AUC

85/111

イロト 不得 トイヨト イヨト

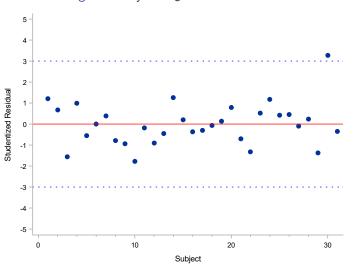


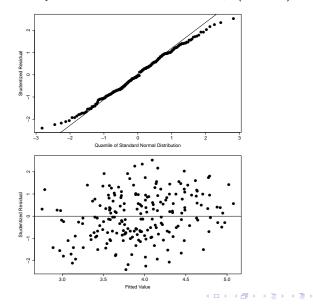
Figure: Study 1a: s_S – Residuals: AUC

86 / 111

э

A B A B
 A B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Figure: Study 7 – Conditional Residuals: C_{max} (Slide 58)



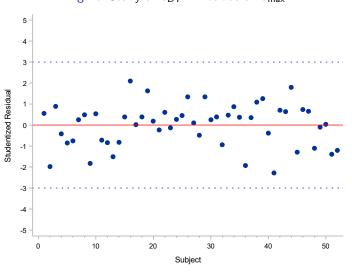
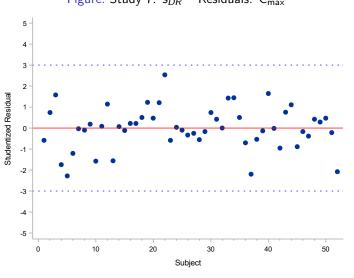


Figure: Study 7: s_{DT} - Residuals: C_{max}



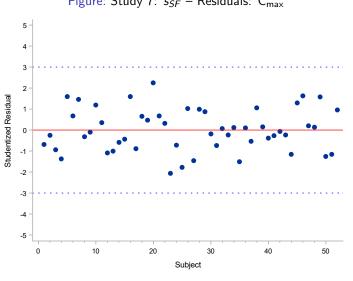


Figure: Study 7: s_{SF} – Residuals: C_{max}

< D > < B > < B > .⊒ → 90/111

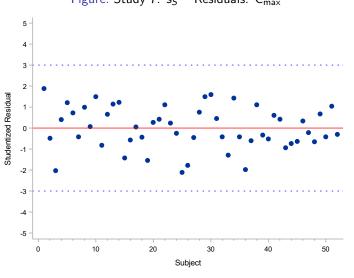


Figure: Study 7: s₅ - Residuals: C_{max}

・ ◆ 遭 ▶ ◆ ≣ ▶ ◆ ≣ ト ● 重 ∽ Q (~ 91/111

- Achieve robustness by:
 - **1** Use standard model for replicate-design crossover study (see above)
 - **2** But specify heavy-tailed distributions for residuals (and subject effects)
 - 3 Here, use Student *t* distributions with low degrees of freedom
 - 4 (Again: Preferable to estimate the degrees of freedom)
- Fit the model using a Bayesian approach
- Compare Student t with normal model (both Bayes)

- Achieve robustness by:
 - Use standard model for replicate-design crossover study (see above)
 - 2 But specify heavy-tailed distributions for residuals (and subject effects)
 - 3 Here, use Student t distributions with low degrees of freedom
 - 4 (Again: Preferable to estimate the degrees of freedom)
- Fit the model using a Bayesian approach
- Compare Student t with normal model (both Bayes)

- Achieve robustness by:
 - Use standard model for replicate-design crossover study (see above)
 - 2 But specify heavy-tailed distributions for residuals (and subject effects)
 - 3 Here, use Student t distributions with low degrees of freedom
 - 4 (Again: Preferable to estimate the degrees of freedom)
- Fit the model using a Bayesian approach
- Compare Student t with normal model (both Bayes)

- Achieve robustness by:
 - Use standard model for replicate-design crossover study (see above)
 - 2 But specify heavy-tailed distributions for residuals (and subject effects)
 - 3 Here, use Student *t* distributions with low degrees of freedom
 - 4 (Again: Preferable to estimate the degrees of freedom)
- Fit the model using a Bayesian approach
- Compare Student t with normal model (both Bayes)

Residuals and random effects

- Bayes_T
 - Student t distribution accommodates heavy tails/outliers • ... $e_{ijk} \sim t\left(0, \sigma_{Wj}^{2*}, v_{Wj}\right)$ where $\sigma_{Wj}^2 = \frac{v_{Wj}}{v_{Wj}-2}\sigma_{Wj}^{2*}$ • ... $s_i \sim t\left(0, \Sigma_B^*, v_B\right)$ where $\Sigma_B = \frac{v_B}{v_B-2}\Sigma_B^*$ • ... $v_{Wj}, v_{Bj} \Rightarrow$ degrees of freedom

Bayes_N

Normal distribution – not robust to outliers ... $e_{ijk} \sim \text{Normal}(0, \sigma_{Wj}^{2*})$ where $\sigma_{Wj}^2 = \sigma_{Wj}^{2*}$... $s_i \sim \text{Normal}(0, \Sigma_B^*, v_B)$ where $\Sigma_B = \Sigma_B^*$

Residuals and random effects

- Bayes_T
 - Student t distribution accommodates heavy tails/outliers • ... $e_{ijk} \sim t\left(0, \sigma_{Wj}^{2*}, v_{Wj}\right)$ where $\sigma_{Wj}^2 = \frac{v_{Wj}}{v_{Wj}-2}\sigma_{Wj}^{2*}$ • ... $s_i \sim t\left(0, \Sigma_B^*, v_B\right)$ where $\Sigma_B = \frac{v_B}{v_B-2}\Sigma_B^*$ • ... $v_{Wj}, v_{Bj} \Rightarrow$ degrees of freedom

Bayes_N

Normal distribution – not robust to outliers ... $e_{ijk} \sim \text{Normal}(0, \sigma_{Wj}^{2*})$ where $\sigma_{Wj}^2 = \sigma_{Wj}^{2*}$... $s_i \sim \text{Normal}(0, \Sigma_B^*, v_B)$ where $\Sigma_B = \Sigma_B^*$

Prior specification

- Vague priors
- ... μ , ζ_h , π_m , $\tau_j \sim N(0, 10000)$
- ... $\sigma_{Wi}^{-2*} \sim \text{Gamma}(0.0001, 0.0001)$
- ... v_{Wj} , $v_B \sim \text{Normal}(0, 10000) T(2, \infty)$ (half-normal)
- ... $\Sigma^* \sim \mathsf{MGH-}t(10000, 2)$ (matrix generalized half-t)

Fit model using JAGS via R package runjags

- Student t: Mixture of normal & gamma distribution
 - Speeds up convergence
 - Matrix generalized half-t for covariance matrix: Huang & Wand (2013)
 - Most priors are conjugate ⇒ fast convergence
- RSABE \Rightarrow calculate:
 - Posterior estimate of θ
 - Upper limit of one-sided 95% Bayesian credibility (BCI) interval for θ
- **DIC** statistic: Discriminate between $Bayes_N \& Bayes_T$

Huang & Wand (2013). Simple marginally noninformative prior distributions for covariance matrices. *Bayesian* Anal.

- Fit model using JAGS via R package runjags
- Student t: Mixture of normal & gamma distribution
 - Speeds up convergence
 - Matrix generalized half-t for covariance matrix: Huang & Wand (2013)
 - $\blacksquare Most priors are conjugate \Rightarrow fast convergence$
- RSABE \Rightarrow calculate:
 - Posterior estimate of θ
 - Upper limit of one-sided 95% Bayesian credibility (BCI) interval for θ
- **DIC** statistic: Discriminate between $Bayes_N \& Bayes_T$

Huang & Wand (2013). Simple marginally noninformative prior distributions for covariance matrices. *Bayesian*

- Fit model using JAGS via R package runjags
- Student t: Mixture of normal & gamma distribution
 - Speeds up convergence
 - Matrix generalized half-t for covariance matrix: Huang & Wand (2013)
 - Most priors are conjugate \Rightarrow fast convergence
- RSABE \Rightarrow calculate:
 - Posterior estimate of θ
 - Upper limit of one-sided 95% Bayesian credibility (BCI) interval for θ
- **DIC** statistic: Discriminate between $Bayes_N \& Bayes_T$

Huang & Wand (2013). Simple marginally noninformative prior distributions for covariance matrices. Bayesian

イロト 不得 トイヨト イヨト ヨー ろくで

101/111

Anal.

- Fit model using JAGS via R package runjags
- Student t: Mixture of normal & gamma distribution
 - Speeds up convergence
 - Matrix generalized half-t for covariance matrix: Huang & Wand (2013)
 - Most priors are conjugate \Rightarrow fast convergence
- RSABE \Rightarrow calculate:
 - Posterior estimate of θ
 - Upper limit of one-sided 95% Bayesian credibility (BCI) interval for θ
- DIC statistic: Discriminate between Bayes_N & Bayes_T

Huang & Wand (2013). Simple marginally noninformative prior distributions for covariance matrices. Bayesian

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへで

102 / 111

Anal.

Pool of datasets from 2-sequence, 2-treatment, 4-period replicate designs:

- 7 studies
- ... for both AUC and C_{max}
- Study 1a: Schall, Ring, Endrenyi (2010)
- ... Study 1a: R contains outliers, whereas T does not
- ... Study 1b: Study 1a's T and R labels reversed

Table: AUC and C _{max} : U	CLs of RSABE and I	Estimates of DF
-------------------------------------	--------------------	-----------------

					Estimates of DF					
		UC	L of RSA	ABE	Residual					
Study	Parameter	REML	Bayes _N	Bayes _T	Test	Reference	Random			
1a	AUC [†]	-0.0294	-0.0270	-0.0126	71.6	3.2	59.3			
	C_{max}^{\dagger}	-0.0262	-0.0155	-0.0108	68.3	4.0	78.4			
1b	AUC [†]	-0.0091	-0.0065	-0.0107	3.2	71.5	63.2			
	C_{max}^{\dagger}	-0.0190	-0.0087	-0.0201	4.0	68.9	76.9			
2	AUC [†]	-0.1388	-0.1283	-0.1245	39.0	53.8	71.6			
	C_{max}^{\dagger}	-0.1328	-0.1249	-0.1191	18.5	44.4	72.0			
3	AUC [†]	-0.1382	-0.1295	-0.1228	17.8	52.9	70.7			
	C_{max}^{\dagger}	-0.1321	-0.1251	-0.1204	31.8	39.6	66.1			
4	AUC [†]	-0.1757	-0.1572	-0.1510	38.3	4.2	71.2			
	C_{max}^{\dagger}	-0.2234	-0.2003	-0.1926	31.2	2.9	55.5			
5	AUC [†]	-0.0085	-0.0066	-0.0065	13.1	69.0	73.5			
	C_{max}^{\dagger}	-0.0070	-0.0055	-0.0059	7.9	76.4	75.5			
6	AUC [†]	-0.0013	0.0009	-0.0007	29.8	4.6	55.3			
	C_{max}^{\dagger}	-0.0009	0.0011	0.0009	28.5	65.5	59.9			
7	AUC	-0.0517	-0.0471	-0.0474	62.6	63.6	68.1			
	C_{max}	0.0821	0.1055	0.1060	79.1	76.8	79.2			

[†]DIC statistic prefers Bayes_T over Bayes_N.

- Degrees of freedom estimates for 2/8 studies (R treatment!) are small for both AUC and C_{max}
- DIC prefers Bayes_T to Bayes_N in most cases
- Bayesian CIs are generally somewhat wider than REML CIs

- Outliers/heavy tails for R treatment inflate the residual variance of R
- Leads to smaller scaling factor when robust methodology is applied

- Degrees of freedom estimates for 2/8 studies (R treatment!) are small for both AUC and C_{max}
- DIC prefers $Bayes_T$ to $Bayes_N$ in most cases
- Bayesian CIs are generally somewhat wider than REML CIs

- Outliers/heavy tails for R treatment inflate the residual variance of R
- Leads to smaller scaling factor when robust methodology is applied

- Degrees of freedom estimates for 2/8 studies (R treatment!) are small for both AUC and C_{max}
- DIC prefers $Bayes_T$ to $Bayes_N$ in most cases
- Bayesian CIs are generally somewhat wider than REML CIs

- Outliers/heavy tails for R treatment inflate the residual variance of R
- Leads to smaller scaling factor when robust methodology is applied

- Degrees of freedom estimates for 2/8 studies (R treatment!) are small for both AUC and C_{max}
- DIC prefers $Bayes_T$ to $Bayes_N$ in most cases
- Bayesian CIs are generally somewhat wider than REML CIs

- Outliers/heavy tails for R treatment inflate the residual variance of R
- Leads to smaller scaling factor when robust methodology is applied

- Degrees of freedom estimates for 2/8 studies (R treatment!) are small for both AUC and C_{max}
- DIC prefers $Bayes_T$ to $Bayes_N$ in most cases
- Bayesian CIs are generally somewhat wider than REML CIs

- Outliers/heavy tails for R treatment inflate the residual variance of R
- Leads to smaller scaling factor when robust methodology is applied

Table: AUC and C_{max}: RSABE Outcomes

		Method												
		REML				Bayes _N				Bayes				
			Pass		Fail	Pass Fa		Fail		Pass	Fail	٦	Total	
Method	Outcome	n	(%)) n	(%)	n	(%)) n	(%)	n	(%) n	(%)	n	(%)
REML	Pass					13	(86.7)) 2	(13.3)	14	(93.3) 1	(6.7)	15	(100.0)
	Fail					0	(0.0)) 1	(100.0)	0	(0.0) 1	(100.0)	1 ((100.0)
Bayes _N	Pass	13 ((100.0)) 0	(0.0)					13	(100.0)0	(0.0)	13	(100.0)
	Fail	2	(66.7)) 1	(33.3)					1	(33.3) 2	(66.7)	3	(100.0)
$Bayes_T$	Pass	14 ((100.0)) 0	(0.0)	13	(92.9)) 1	(7.1)				14	(100.0)
	Fail	1	(50.0)) 1	(50.0)	0	(0.0)) 2	(100.0)				2	(100.0)
	Total	15	(93.8)) 1	(6.3)	13	(81.3)) 3	(18.8)	14	(87.5) 2	(12.5)	16	(100.0)

The DIC statistic preferred $Bayes_T$ over $Bayes_N$ in 14 out of 16 cases.

Summary (agreement between methods):

 Good agreement between REML and Bayes methods, in particular REML with Bayes_T