

Planning crossover bioequivalence trials accounting for the uncertainty of the assumptions

A. Ring^{1,2}, B. Lang³, I. Dan Dije⁴, C. Kazaroho⁵, D. Labes⁶, R. Schall^{1,7}, H. Schütz⁸

- 1 University of the Free State, South Africa
- 2 medac GmbH Germany
- 2 medac GmbH, Germany
- 3 Boehringer Ingelheim, Germany
- 4 AIMS Senegal, Senegal
- 5 AIMS Rwanda, Rwanda
- 6 Consultant, Germany
- 7 IQVIA Biostatistics, Bloemfontein, South Africa
- 8 BEBAC, Austria

African Institute of Mathematical Sciences

- 5 African students have worked in this field
 - 2017 Gilbert Tumusabe AIMS Rwanda Superiority trials
 - 2018 Didier Habima AIMS Rwanda Superiority trials
 - 2018 Claudine Kazaroho AIMS Rwanda Bioequivalence trials
 - 2019 Ibrahim Dan Dije AIMS Senegal Bioequivalence trials
 - 2019 Sinclair Awounvo University of Bremen Systematic review of BE trial planning
- 1st paper recently published
- 2 more manuscripts in preparation

	Received: 10 December 2018	Revised: 28 May 2019	Accepted: 3 June 2019	
	DOI: 10.1111/bcp.14055			
ORIGINAL ARTICLE				BICP BRITISH PHARMACOLOGICA

Sample size determination in bioequivalence studies using statistical assurance

A. Ring^{1,2} III H. Lang³ C. Kazaroho⁴ III. Labes⁵ III. Labes⁵ III. Schall^{1,6} III. Schütz⁷

- H. Schütz presentation Biosimilars 2017
 - AIMS students
- Setup of bioequivalence trials
 - Power calculation
- Definition of Assurance as Expected Power
 - Expected Coefficient of Variation
 - Expected T/R ratio
- Results
 - Comparison of Power and Assurance
- Conclusion

- Brand name of a drug on the market (gold standard)
- Patent protection expired
- Other company wants to sell a generic formulation
- WHO Definition:

Two pharmaceutical products are bioequivalent

if ... their bioavailabilities,

in terms of rate and extent of absorption ...

are similar to such a degree that their effects can be expected to be essentially the same

Bioequivalence trials

- New formulation (Test)
- Existing formulation (Reference)
- Comparison of pharmacokinetic profiles in Humans following single p.o. administration
- Typical 2x2 design: 2 treatment, 2 period *crossover* trial

- **Bioequivalence trials**
- **Primary Endpoints: Pharmacokinetic metrics**
 - C_{max}
 - AUC_{tz}, AUC∞
- PK metrics are log-normally distributed
 - Analysis following log-transformation
- To demonstrate that they are "on average similar"

Bioequivalence trials

- Statistical evaluation
 - Ratio of PK endpoints between T and R and its 90%CI
 - $=\frac{C_{max}^{T}}{C_{max}^{R}}$ θ
 - Acceptance range [80.00%,125.00%] (per BE guidelines)

- medac
- Sample size should be sufficiently large to demonstrate BE (with high probability) – but not larger
 - Efficient cost & time
- 6 parameters are combined when considering the power
 - Margin *m*
 - Type-I error *a* (consumer risk)
 - Type-II error $\beta \rightarrow$ Power $\pi = 1 \beta$
 - Anticipated T/R-ratio θ
 - (intraindividual) Coefficient of variation CV
 - Total sample size *N*

Power and Coefficient of Variation

Power vs. CV for N=16

- medac
- 6 parameters are combined when considering the power
 - Margin *m=0.8 (1.25)*
 - Type-I error *a*=0.05 per BE guidelines
 - Type-II error β → Power $\pi = 1 - \beta = 80\%$ or 90% often selected
 - Anticipated T/R-ratio of the metric θ
 - (intraindividual) Coefficient of variation CV
 - ➔ Total sample size ∧
- *CV*: selected using data of previous PK trials of this drug
- There are generally no data for estimating θ (relative bioavailability is not known for this formulation)

- 6 parameters are combined when considering the power
 - Margin *m=0.8 (1.25)*
 - Type-I error *a*=0.05 per BE guidelines
 - Type-II error β \rightarrow Power $\pi = 1 - \beta = 90\%$
 - Anticipated T/R-ratio of the metric $\theta = 1.00$
 - (intraindividual) Coefficient of variation CV=0.3
 → Total sample size N=30
- Can we be sure about the values of CV and θ ?

How to select the value for CV?

- (intraindividual) Coefficient of variation *CV*
 - Drug property, often determined by the variability of the drug elimination
 - To be obtained from <u>previous</u> pharmacokinetic crossover trials
 - Sample sizes in such PK trials are often rather low
 - Only an estimate of CV was obtained !!

How to select the value for CV?

- (intraindividual) Coefficient of variation CV
 - Only an estimate of CV was obtained !!
- Example
 - Previous trial had 24 subjects
 - Estimated CV of C_{max} : 20%
 - Estimated CV of AUC: 16%
- 90% confidence intervals of CV using the χ^2 distribution

$$100(1-\alpha)CI_{CV} = [L_B, U_B] = \left[\sqrt{\exp\left(\frac{(n-1)S^2}{\chi^2_{(n-1),(1-\alpha/2)}}\right) - 1}, \sqrt{\exp\left(\frac{(n-1)S^2}{\chi^2_{(n-1),(\alpha/2)}}\right) - 1}\right]$$

- C_{max}: (16.1%, 26.9%)
- AUC: (12.9%, 21.5%)
- ➔ There is considerable uncertainty!

Statistical Assurance for Clinical Trials

- Power considerations to determine sample size in comparative clinical trials
- Study power depends on <u>fixed</u> values of assumptions
 - No room for uncertainty
- Assurance uses a <u>distribution</u> on one or several of the assumed model parameters
 - Distribution accounts for uncertainty
- Assurance reflects "probability of success" given these distributions

Determining the Statistical Assurance

Instead of taking a single value of CV, consider a distribution

 $\gamma = P(\text{Successful trial}) = \int \pi(CV) W(CV) dCV$

Comparison Power to Assurance

- Instead of taking a single value of CV, consider a distribution of potential values of CV
- Power function π for various values of CV
- Weight function W (Inverse gamma distribution with CV=0.2 and Pilot-N)
- Assurance of <u>new</u> trial (given Pilot N and estimated CV)

	New N=14	New N=16
Pilot $N = 12$	66%	70%
Pilot N = 20	74%	77%
Power	76%	83%

Assurance of CV

medac

Impact of Sample size of New Trial

Impact of Sample size of Pilot Trial(s)

- 6 parameters are combined when considering the power
 - Margin *m*
 - Type-I error a
 - Type-II error $\beta \rightarrow \text{Power } \pi = 1 \beta$
 - Anticipated T/R-ratio θ
 - (intraindividual) Coefficient of variation \mathcal{CV}
 - Total sample size N
- Which value is the best assumption for θ ?

Sample size determination in the literature

medac

• Which value to choose for θ ?

A sample size of 50 subjects completing the study was determined to have at least 90% power to show bioequivalence between the 2 somatropin treatments, assuming a 20% intrasubject %CV for the C_{max} of somatropin. A sample size of 60 was planned to allow

The sample size was calculated on the basis of a crossover design with log-transformed data according to Hauschke et al. [12], considering an intra-individual variation coefficient of 22.7 %, a power of the test of 80 %, a confidence interval of 80-125 %, an expected ratio μ T/ μ R (mean of test versus reference) of 1.10, based The sample size for this trial was derived from data characterising the variability of metformin products [17-19]. The intraindividual geometric coefficient of variation (gCV) of the C_{max} of metformin is approximately 23.5%. The variability of AUC is lower than that of C_{max} , and did not need to be considered in the sample size assessment. The trial was, therefore, planned to accommodate a true geometric mean ratio of the pharmacokinetic endpoints within the range of 97% to 103% with at least 88% power. These assumptions led to a sample size of 26 evaluable subjects per study part, and an enrolment of 28 subjects per study part was planned to allow for potential drop-outs.

To ashieve 85% power (1-sided $\alpha = 0.05$; true mean ratio = 1.05), 24 participants (4 per sequence) were required to com-

collection times were used for analysis. For each type of organ transplant, a sample size of 24 individuals was required to achieve 90% statistical power for concluding bioequivalence in crossover trials at an alpha of 0.05 using standard bioequivalence limits of 80%–125% and assuming a true difference of 0 [16,33,34].

Findings from different studies								
Reference	θ_0	CV	π	n				
Radicioni et al. (2017)	1	0.383	0.8	50				
Bosilkovska et al. (2016)	1	0.3	0.8	30				
Navarro et al. (2016)	1.1	0.227	0.8	40				
Ermer et al. (2016)	1.05	0.215	0.85	24				
Luo et al. (2016)	0.95 - 1.05	0.25	0.8	24				
Boudriau et al. (2016)	0.925 - 1.075	0.2	0.8	33				

with paired means option. Fixing the significance level α at 5% and the hypothesized test/reference mean ratio to 1, 50 subjects were considered sufficient to attain a power of 80% to correctly conclude the bioequivalence between the

Systematic review on planning BE trials

- 126 identified articles of BE trials
 - 48 reported sufficient details for sample size considerations
 - Of those, 12 (25%) assumed a T/R ratio of 1.00

Power of BE trial depending on T/R ratio

- Sample size determination using the power approach
 - Requires one fixed expected value for the T/R ratio θ
 - Most likely value (if no difference in dissolution) is 1.00
 - However any deviation from 1.00 would lead to loss of power
 - Anticipating a different value would be more conservative
 - However no direction (0.95 vs. 1.05) could be justified
- Is this the best statistical approach?

- Previously, many authors have used a single value $\theta \neq 1.00$
 - Most common were $\theta = 1.05$ or $\theta = 0.95$
- Instead of taking a single value of θ , consider a distribution of possible values of θ
- Assume a (Log-)Normal distribution $(0, \sigma)$
 - Symmetric (on log-scale) around T/R ratio of 1.00
 - Uses a new parameter *σ*, which characterises the uncertainty
 - Which value of σ would be appropriate?

Assurance (expected power) for the T/R ratio

- Instead of taking a single value of θ , consider a distribution
 - $\gamma = P(\text{Successful trial}) = \int \pi(\theta) W(\eta) d\eta \quad \text{with} \quad \eta = \log(\theta)$

Assurance (expected power)

- Instead of taking a single value of θ , consider a distribution of possible values of θ
- Power function π for various values of θ
 - Maximum at most likely value 1.00
- Weight function W ((Log-)Normal distribution $(0, \sigma)$)
 - Symmetric (on log-scale) around T/R ratio of 1.00
- Assurance is the area under the product curve

	N=16	N=32	
Power	83%	99%	E e c)
$\sigma = 0.03$	80%	98%	
$\sigma = 0.05$	74%	95%	0.80 0.85 0.90 0.96 1.00 1.05 1.10 1.15 1.20 9

Comparison power vs. Assurance (T/R ratio)

medac

27

Power

Assurance

CV=25%

Comparison power vs. assurance

medac

 Sample size for same value of power/assurance depending θ and σ

theta0

Power equals Assurance; gCV: 0.3

Additional considerations

- Which value should we select for σ ?
 - Maybe 0.05 is too small?
- Specifications of pharmaceutical drug formulations leave room for slight deviations
 - Typical limits for batch-to-batch variability are in the range of 5%.
 - This variability is typically not covered by the drug specific CV
 - Most clinical pharmacology studies use a single product batch.
- See also
 - Burmeister Getz E et al. Clin Pharmacol Ther. 2017
 Between-Batch Pharmacokinetic Variability Inflates Type I Error Rate in Conventional Bioequivalence Trials ...
 - Burmeister Getz E et al. Clin Pharmacol Ther. 2016
 Batch-to-Batch Pharmacokinetic Variability Confounds Current Bioequivalence Regulations ...

- In general, the focus of Statisticians is on the variability, not on the mean
 - Assurance appears to be a better concept to handle uncertainty than power calculations with $\theta \neq 1.00$
- Traditional power estimations using deviations of θ from unity of up to 5% are similar to assurance with σ <4-6%
 - In this range, relationship between θ and σ almost linear and independent of *N* and *CV*
- In contrast to most superiority trials, the assurance for BE trials in the range of 80%-90% can be achieved with practical sample sizes