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• 5 African students have worked in this field

• 2017 – Gilbert Tumusabe – AIMS Rwanda   – Superiority trials

• 2018 – Didier Habima – AIMS Rwanda – Superiority trials

• 2018 – Claudine Kazaroho – AIMS Rwanda – Bioequivalence trials

• 2019 – Ibrahim Dan Dije – AIMS Senegal – Bioequivalence trials

• 2019 – Sinclair Awounvo – University of Bremen – Systematic 

review of BE trial planning

• 1st paper recently published

• 2 more manuscripts in preparation
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• H. Schütz presentation – Biosimilars 2017

• AIMS students

• Setup of bioequivalence trials

• Power calculation

• Definition of Assurance as Expected Power

• Expected Coefficient of Variation

• Expected T/R ratio

• Results

• Comparison of Power and Assurance

• Conclusion
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Overview



• Brand name of a drug on the market (gold standard)

• Patent protection expired

• Other company wants to sell a generic formulation

• WHO Definition: 

Two pharmaceutical products are bioequivalent 

if … their bioavailabilities, 

in terms of rate and extent of absorption … 

are similar to such a degree that their effects can be 

expected to be essentially the same
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Bioequivalence



• New formulation (Test)

• Existing formulation (Reference)

• Comparison of pharmacokinetic profiles in Humans 

following single p.o. administration

• Typical 2x2 design: 2 treatment, 2 period crossover trial
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Bioequivalence trials



• Primary Endpoints: Pharmacokinetic metrics

• Cmax

• AUCtz, AUC∞

• PK metrics are log-normally distributed

• Analysis following log-transformation

• To demonstrate that they are 

„on average similar“
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Bioequivalence trials



• Statistical evaluation

• Ratio of PK endpoints between T and R and its 90%CI

𝜃 =
𝐶𝑚𝑎𝑥
𝑇

𝐶𝑚𝑎𝑥
𝑅

• Acceptance range [80.00%,125.00%]

(per BE guidelines)
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Bioequivalence trials



• Sample size should be sufficiently large to demonstrate BE 

(with high probability) – but not larger 

• Efficient cost & time

• 6 parameters are combined when considering the power

• Margin m

• Type-I error α (consumer risk)

• Type-II error β  Power π =1-β 

• Anticipated T/R-ratio  𝜃

• (intraindividual) Coefficient of variation CV

• Total sample size N
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Sample size determination
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Power and Coefficient of Variation
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• 6 parameters are combined when considering the power

• Margin m=0.8  (1.25)

• Type-I error α=0.05 per BE guidelines

• Type-II error β
 Power π =1-β = 80% or 90% often selected

• Anticipated T/R-ratio of the metric 𝜽

• (intraindividual) Coefficient of variation CV

 Total sample size N

• CV: selected using data of previous PK trials of this drug

• There are generally no data for estimating 𝜃
(relative bioavailability is not known for this formulation)
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Sample size determination



• 6 parameters are combined when considering the power

• Margin m=0.8  (1.25)

• Type-I error α=0.05 per BE guidelines

• Type-II error β
 Power π =1-β = 90%

• Anticipated T/R-ratio of the metric  𝜽 = 1.00

• (intraindividual) Coefficient of variation CV =0.3

 Total sample size N =30 

• Can we be sure about the values of CV and 𝜽 ?
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Example



• (intraindividual) Coefficient of variation CV 
• Drug property, often determined 

by the variability of the drug elimination 

• To be obtained from previous

pharmacokinetic crossover trials

• Sample sizes in such PK trials are often rather low

• Only an estimate of CV was obtained !!
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How to select the value for CV?



• (intraindividual) Coefficient of variation CV 

• Only an estimate of CV was obtained !!

• Example

• Previous trial had 24 subjects

• Estimated CV of Cmax: 20%

• Estimated CV of AUC: 16%

• 90% confidence intervals of CV using the χ² distribution

• Cmax: ( 16.1%, 26.9% )

• AUC:   ( 12.9%, 21.5% )

 There is considerable uncertainty!
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How to select the value for CV?



• Power considerations to determine sample size 

in comparative clinical trials

• Study power depends on fixed values of assumptions

• No room for uncertainty

• Assurance uses a distribution on one or several of the 

assumed model parameters

• Distribution accounts for uncertainty

• Assurance reflects “probability of success” given these 

distributions
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Statistical Assurance for Clinical Trials



• Instead of taking a single value of 𝐶𝑉, consider a distribution
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Determining the Statistical Assurance

𝛾 = 𝑃 Successful trial = න𝜋 𝑪𝑽 𝑊 𝑪𝑽 𝑑𝑪𝑽

Power  𝜋

Weight 𝑊

Product

Npilot= 20 / 12

Nnew=16 / 14



• Instead of taking a single value of CV, 

consider a distribution of potential values of CV

• Power function π for various values of CV

• Weight function W

(Inverse gamma distribution with CV=0.2 and Pilot-N)

• Assurance of new trial (given Pilot N and estimated CV)
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Comparison Power to Assurance

New N=14 New N=16

Pilot N = 12 66% 70%

Pilot N = 20 74% 77%

Power 76% 83%
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Assurance of CV
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• 6 parameters are combined when considering the power

• Margin m

• Type-I error α

• Type-II error β  Power π =1-β 

• Anticipated T/R-ratio  𝜃

• (intraindividual) Coefficient of variation CV

• Total sample size N

• Which value is the best assumption for 𝜽 ?
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Sample size determination



• Which value to choose for 𝜃 ?

19

Sample size determination

Power of BE trial depending on T/R ratio
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• Which value to choose for 𝜃 ?
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Sample size determination in the literature



• 126 identified articles of BE trials

• 48 reported sufficient details for sample size considerations

• Of those, 12 (25%) assumed a T/R ratio of 1.00

Systematic review on planning BE trials
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• Which value to choose for 𝜃 ?
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Sample size determination

Power of BE trial depending on T/R ratio
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• Sample size determination using the power approach

• Requires one fixed expected value for the T/R ratio 𝜃

• Most likely value (if no difference in dissolution) is 1.00

• However any deviation from 1.00 would lead to loss of 

power

• Anticipating a different value would be more conservative

• However no direction (0.95 vs. 1.05) could be justified 

• Is this the best statistical approach?
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Power approach



• Previously, many authors have used a single value 𝜃 ≠ 1.00

• Most common were 𝜃 = 1.05 or 𝜃 = 0.95

• Instead of taking a single value of 𝜃, 

consider a distribution of possible values of 𝜃

• Assume a (Log-)Normal distribution (0,σ)

• Symmetric (on log-scale) around T/R ratio of 1.00

• Uses a new parameter σ, which characterises the 

uncertainty

• Which value of σ would be appropriate?
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Assurance (expected power)
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• Instead of taking a single value of 𝜃, consider a distribution
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Assurance (expected power) for the T/R ratio

Power function π

Weight function W ((Log-)Normal distribution (0,σ))

Product of π*W

𝛾 = 𝑃 Successful trial = න𝜋 𝜃 𝑊 𝜂 𝑑𝜂 with 𝜂 = log 𝜃
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• Instead of taking a single value of 𝜃, 

consider a distribution of possible values of 𝜃

• Power function π for various values of 𝜃

• Maximum at most likely value 1.00

• Weight function W ((Log-)Normal distribution (0,σ))

• Symmetric (on log-scale) around T/R ratio of 1.00

• Assurance is the area under the product curve
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Assurance (expected power)

N=16 N=32

Power 83% 99%

𝜎 = 0.03 80% 98%

𝜎 = 0.05 74% 95%
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Comparison power vs. Assurance (T/R ratio)
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• Sample size for same value

of power/assurance

depending θ and σ
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Comparison power vs. assurance
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• Which value should we select for σ ?

• Maybe 0.05 is too small?

• Specifications of pharmaceutical drug formulations leave room for slight 

deviations

• Typical limits for batch-to-batch variability are in the range of 5%. 

• This variability is typically not covered by the drug specific CV

• Most clinical pharmacology studies use a single product batch. 

• See also 

• Burmeister Getz E et al. Clin Pharmacol Ther. 2017 

Between-Batch Pharmacokinetic Variability Inflates Type I Error Rate in 

Conventional Bioequivalence Trials …

• Burmeister Getz E et al. Clin Pharmacol Ther. 2016 

Batch-to-Batch Pharmacokinetic Variability Confounds Current Bioequivalence 

Regulations …
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Additional considerations



• In general, the focus of Statisticians is on the variability, 

not on the mean

• Assurance appears to be a better concept to handle 

uncertainty than power calculations with 𝜃 ≠ 1.00

• Traditional power estimations using deviations of 𝜃 from unity 

of up to 5% are similar to assurance with 𝜎<4-6%

• In this range, relationship between 𝜃 and 𝜎 almost linear 

and independent of N and CV

• In contrast to most superiority trials, the assurance for BE 

trials in the range of 80%-90% can be achieved with practical 

sample sizes
31

Conclusion


