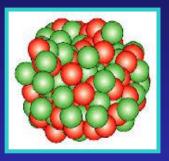
# Nanoparticles for Drug Targeting: Current Status and Future

### **Gert Storm**

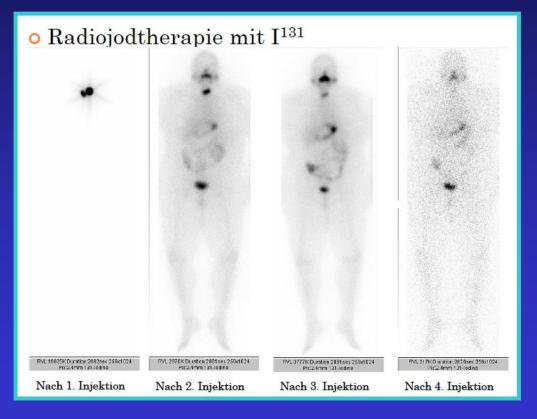
Department of Pharmaceutics Utrecht Institute for Pharmaceutical Sciences Utrecht University

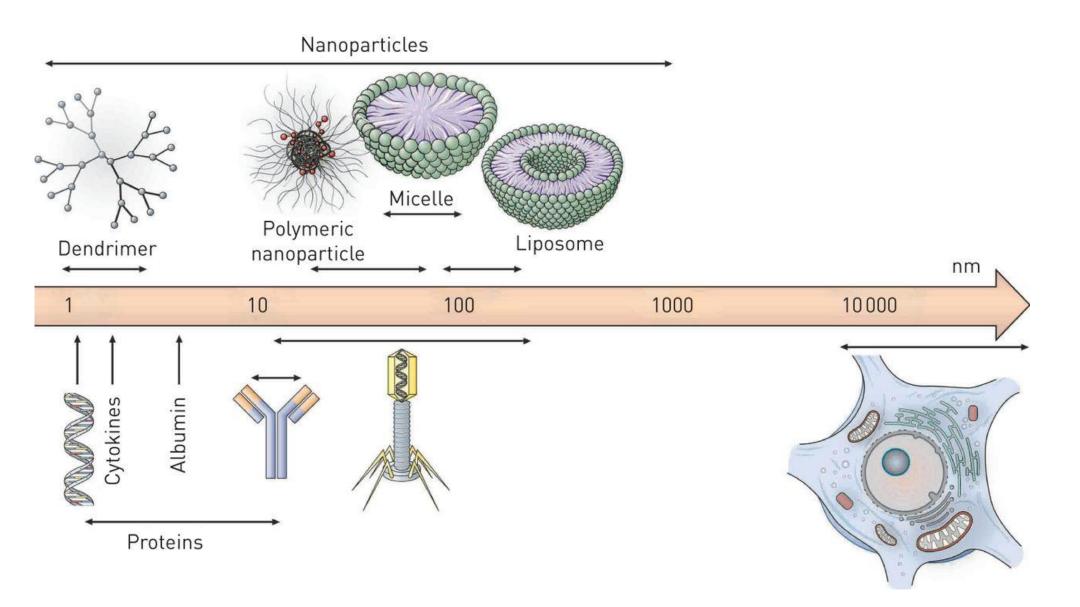
Department of Targeted Therapeutics MIRA Institute for Biomedical Technology&Technical Medicine, University of Twente

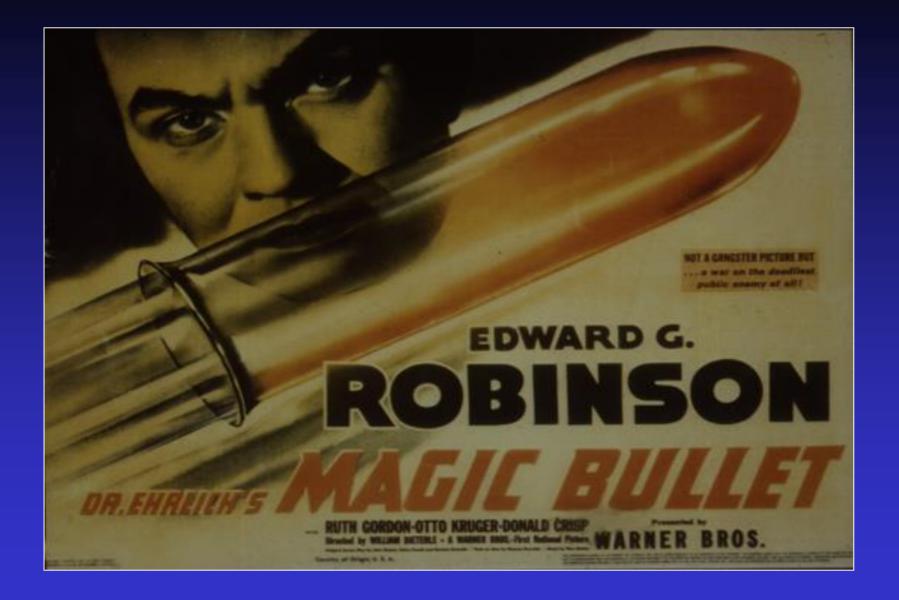



**Universiteit Utrecht** 

### UNIVERSITEIT TWENTE.


### Mother Nature Iodide: almost 100% in the thyroids


#### => <sup>131</sup> iodine-based diagnosis and therapy of thyroid cancer



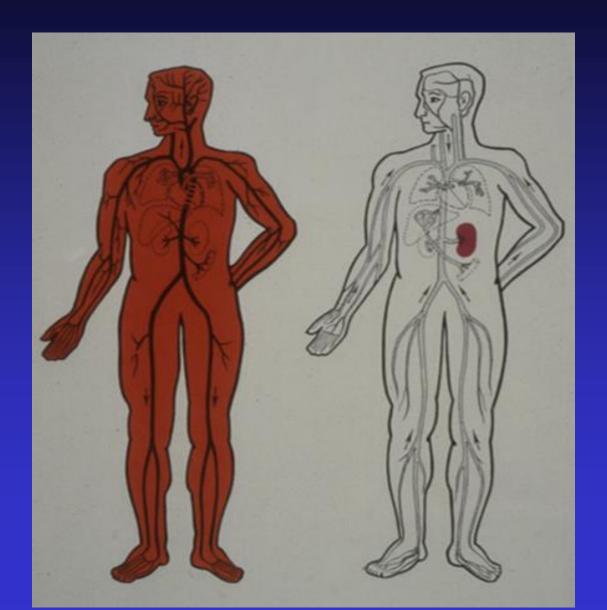

 $^{131}$ I = 0.1 nm





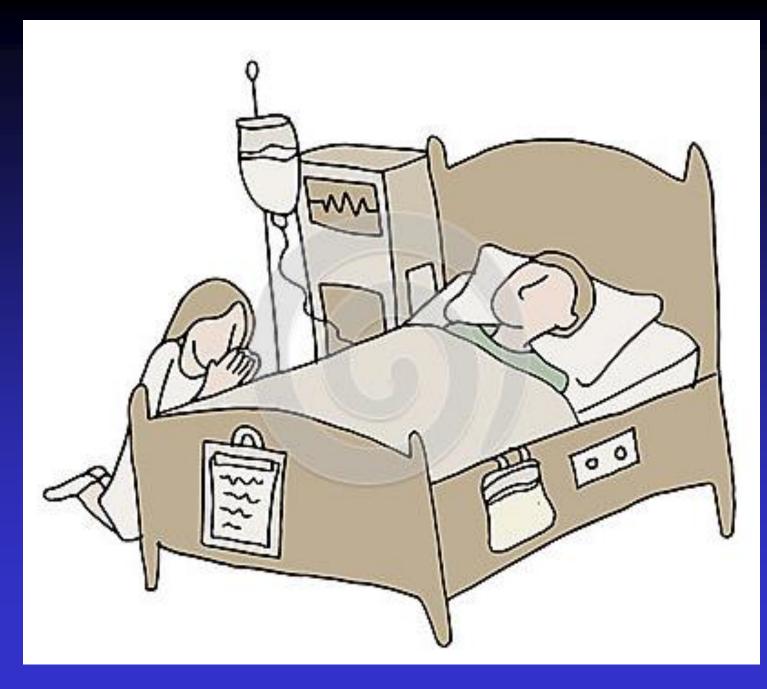







# There's plenty of room at the bottom.

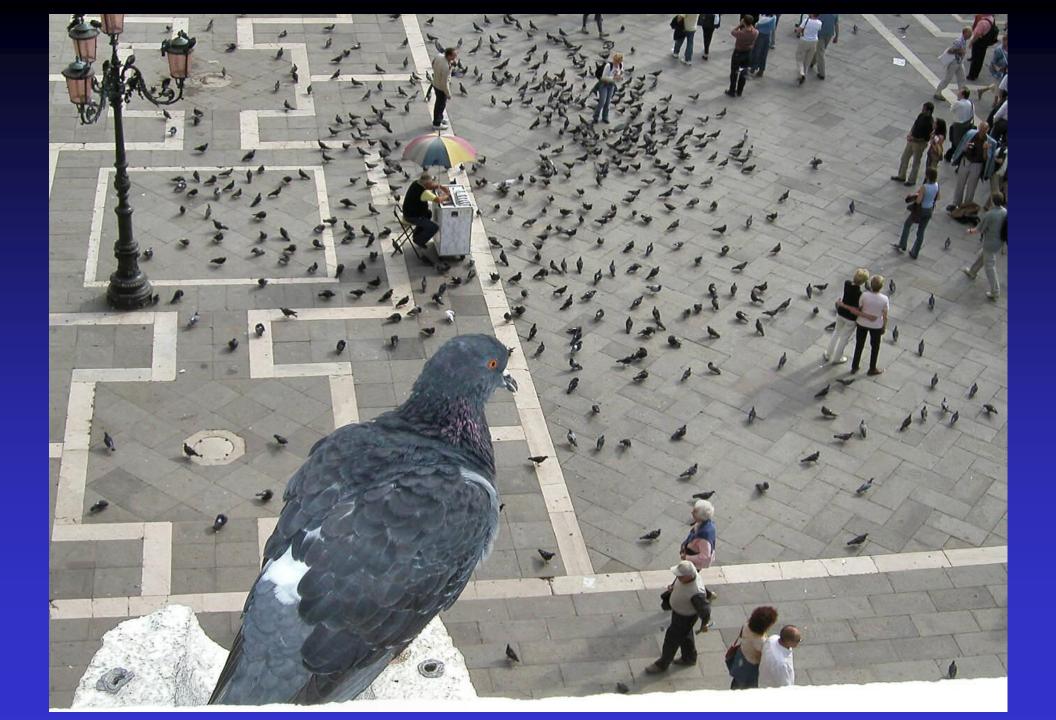
— Richard P. Feynman —


#### AZQUOTES

# Targeted Nanomedicines



# AIM: Increased Therapeutic Index Efficacy / Toxicity


Targeted nanomedicines can favorably change the efficacy/safety balance



Life-threatening and society-burdening diseases:

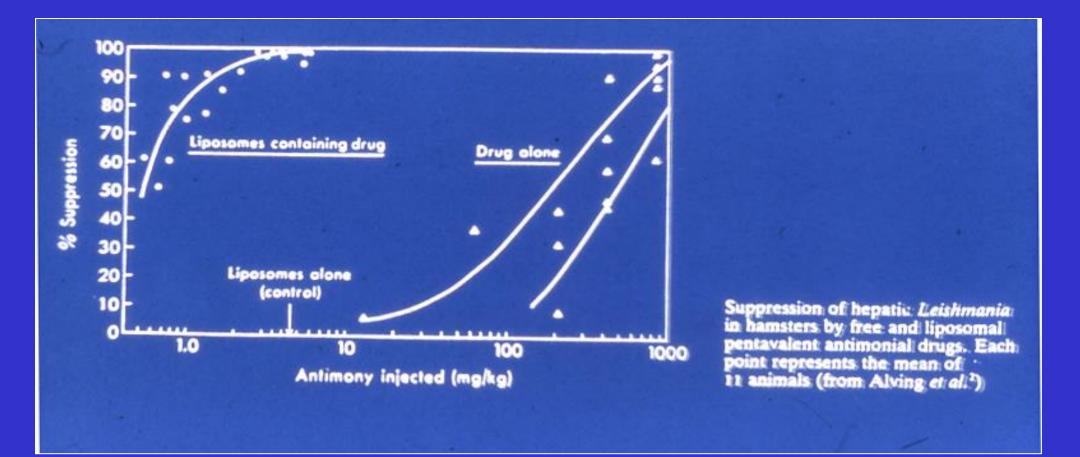
needle often required

often drugs with small therapeutic index



# **Drug Targeting Routes**

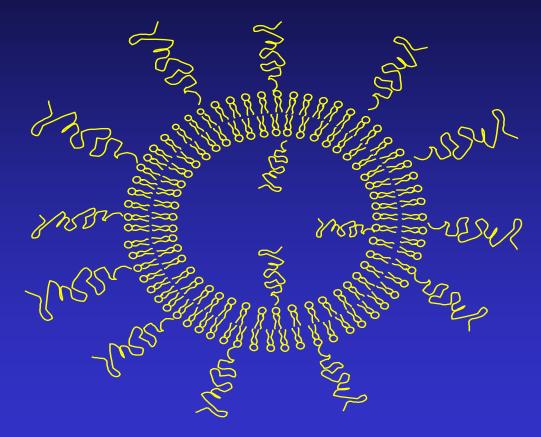
 Direct administration into diseased site (only possible in limited cases)


Systemic administration
 (mostly parenteral administration)

# 70-90s: Major limitations of IV nanoparticulate drug targeting

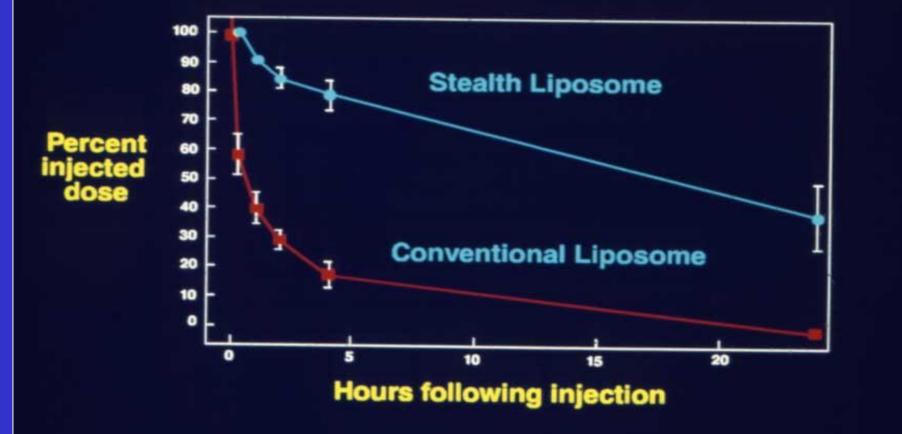
Short circulation time due to efficient MPS uptake
Drug release in the bloodstream
Limited capacity to extravasate Nanoparticles are often rapidly removed from the circulation by phagocytic MPS cells (mainly those in liver and spleen). Liver and spleen uptake The macrophages in liver and spleen are mainly responsible for rapid clearance from the circulation

These macrophages are also the cell type of replication for many intracellular infectious organisms


(Salmonella spp., Brucella spp., Mycobacterium spp., Leishmania spp.)



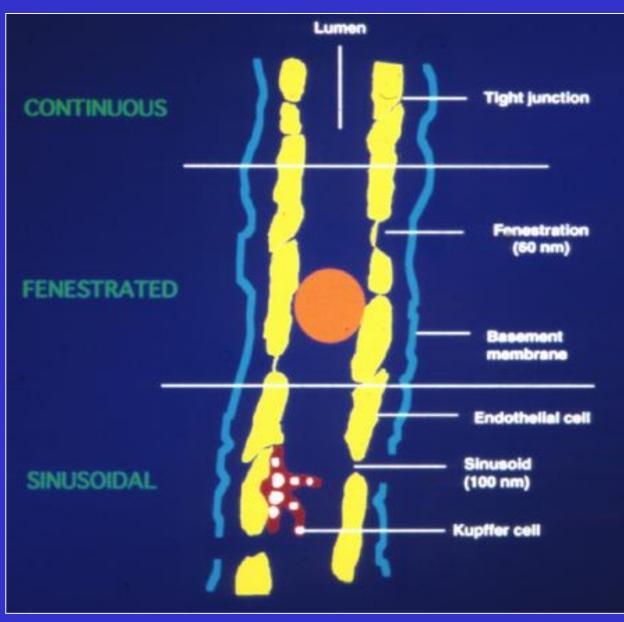
Major limitations of IV nanoparticulate drug targeting


- Short circulation time due to efficient MPS uptake
- Limited capacity to extravasate

# PEG coating prolongs liposome circulation time



Coating with poly(ethylene) glycol (PEG) decelerates liposome uptake by MPS


# Plasma Clearance of Stealth® and Conventional Liposomes

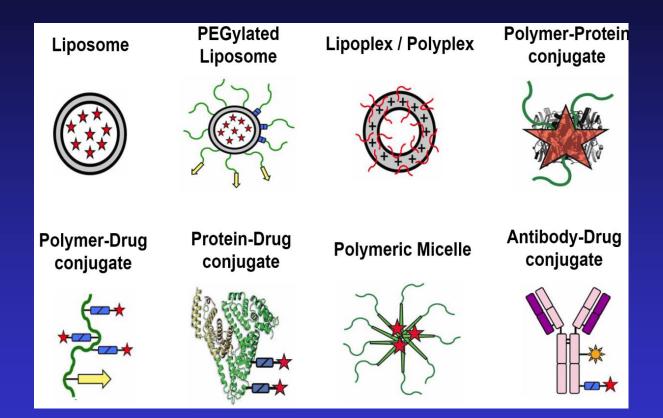


Major limitations of IV nanoparticulate drug targeting

- Short circulation time due to efficient MPS uptake
- Limited capacity to extravasate

### **The Endothelial Barrier**




# Endothelium in disease

In many disease processes the endothelium becomes permeable (inflammation, infection, malignancy)

allowing EXTRAVASATION

Extravasation through 'leaky' vasculature (EPR effect)

# Targeted Nanomedicines In Clinical Application





Universiteit Utrecht

**UIPS** 



### nanomedicines on the market (about 50)

nanocrystals (15/0) + polymers (15/2) + liposomes (10/4) + proteins (2/2) + micelles (1/0) + inorganic NP (8/1)

| Nanomedicines - Approved Proc                                                      | ouces and Crimical Mais                                                                     |                                                                                                                           |                                                                                          |                              |
|------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|------------------------------|
| Table I List of FDAApproved Nanometicines Stratified by Material Category          |                                                                                             |                                                                                                                           |                                                                                          |                              |
| Name                                                                               | Material Description                                                                        | Nanopartide Advantage                                                                                                     | Indication(s)                                                                            | Year(s)<br>approve           |
| Polymer Nanoparticles – synthetic                                                  | polymer particles combined with dru                                                         | ş orbiologics                                                                                                             |                                                                                          |                              |
| Adagen@/pegademase<br>bovine (Sigma-Tau<br>Pharmaceuticals)                        | PEGylated adenosine<br>deaminase enzyme                                                     | Improve circulation time and<br>decreased immunogenicity                                                                  | Severe combined<br>immunodeficiency<br>disease (SCID)                                    | 1990                         |
| Pharmaceuscae)<br>Cimza@/certolizumab pegol<br>(UCB)                               | PEGylated antibody fragment<br>(Certolizumab)                                               | Improved circulation time and<br>greater stability in viso.                                                               | Crohn's disease<br>Rheumatoid arthritis<br>Paoriatic Arthritis<br>Ankylosing Spondylitis | 2008<br>2009<br>2013<br>2013 |
| Copaxone®/Glatopa (Teva)                                                           | Random copolymer of<br>L-glutamate, L-alanine,<br>L-lysine and L-tyrosine                   | Large amino-acid based<br>polymer with controlled<br>molecular weight and<br>dearance characteristics                     | Multiple Sderosis (MS)                                                                   | 1996                         |
| Bigard® (Tolmar)                                                                   | Lesprolide acetate and polymer<br>(PLGH (poly (DL-Lactide-co-<br>glycolide))                | Controlled delivery of payload<br>with longer circulation time                                                            | Prostatie Cancer                                                                         | 2002                         |
| Macugen/B/Regaptanib<br>(Bausch & Lomb)                                            | PEGylated anti-VEGF aptamer<br>(vascular endothelial growth<br>factor) aptamer              | Improved stability of aptamer as<br>a result of PEGylation                                                                | Macular degeneration,<br>neova.cular age-related                                         | 2004                         |
| Mircera®/Methoxy<br>polyethylene glycol-epoetin<br>beta (Hoffman-La Roche)         | Chemically synthesized ESA<br>(erythropoiesis-stimulating<br>agent)                         | Improved stability of aptamer as<br>a result of PEGylation                                                                | Anemia associated with<br>chronic kidney disease                                         | 2007                         |
| Neulasta®/pegfigrastim<br>(Amgen)                                                  | PEGylated GCSF protein                                                                      | Improved stability of protein<br>through PEGylation                                                                       | Neutropenia,<br>Chemotherapy<br>induced                                                  | 2002                         |
| Pegays® (Genentech)                                                                | PEGylated IFN alpha-2a protein                                                              | Improved stability of protein<br>through PEGylation                                                                       | Hepatitis B; Hepatitis C                                                                 | 2002                         |
| Pegintron® (Merck)                                                                 | PEGylated IFN alpha-2b protein                                                              | Improved stability of protein<br>through PEGylation                                                                       | Hepatitis C                                                                              | 2001                         |
| Renagel®(sevelamer<br>hydrochloride)/<br>Renagel®(sevelamer<br>carbonate) (Sanofi) | Poly(allylamine hydrochloride)                                                              | Increase circulation and<br>therapeutic delivery                                                                          | Chronic kidney disezze                                                                   | 2000                         |
| Somavert®/pegvisomant<br>(Pfizer)                                                  | PEGylated HGH receptor<br>antagonist                                                        | Improved stability of protein<br>through PEGylation                                                                       | Acromegaly                                                                               | 2003                         |
| Oncepar®/pegaspargase<br>(Enzon Pharmaceuticals)                                   | Polymer-protein conjugate                                                                   | Improved stability of protein                                                                                             | Acute lymphoblastic                                                                      | 1994                         |
| (Erzon Framaceuscas)<br>Krystexxa®/pegloticase<br>(Horizon)                        | (PEGylated L-asparaginase)<br>Polymer-protein conjugate<br>(PEGylated porcine-like unicase) | through PEGylation<br>Improved stability of protein<br>through PEGylation;<br>introduction of unique<br>mammalian protein | leukemia<br>Chronic gout                                                                 | 2010                         |
| Plegtidy® (Biogen)                                                                 | Polymer-protein conjugate<br>(PEGylated IFN beta-1a)                                        | Improved stability of protein<br>through PEGylation                                                                       | Mulple Sciences                                                                          | 2014                         |
| ADYNOVATE (Bacalta)                                                                | Polymer-protein conjugate<br>(PEGylated factor VII)                                         | Improved stability of protein<br>through PEGylation                                                                       | Hemophila                                                                                | 2015                         |
| Liposome formulations combined<br>DaunoXome® (Galen)                               | with drugs or biologics<br>Liposomal Daunorubicin                                           | Increased delivery to turnour                                                                                             | Karposi's Sartoma                                                                        | 1996                         |
| Cathorones (Gater)                                                                 | operana casheraban                                                                          | site; lower systemic toxicity<br>arising from side-effects                                                                | Karpen's Satema                                                                          | 1776                         |
| DepoCyt® (Signa-Tau)                                                               | Liposomal Cytarabine                                                                        | Increased delivery to turnour<br>site; lower systemic toxicity<br>arising from side-effects                               | Lymphomaticus<br>meningitis                                                              | 1996                         |
| Marqibo® (Onco TCS)                                                                | Liposomal Vincristine                                                                       | Increased delivery to turnour<br>site; lower systemic toxicity<br>arising from side effects                               | Acute Lymphoblastic<br>Leukemia                                                          | 2012                         |
| Onivyde® (Merrimadi)                                                               | Liposomal Irinotecan                                                                        | Increased delivery to tumour<br>site; lower systemic toxicity<br>arising from side effects                                | Pancreatic Cancer                                                                        | 2015                         |
| AmBisome® (Gilead<br>Sciences)                                                     | Liposomal Amphotericin B                                                                    | Reduced nephrotoxicity                                                                                                    | Fungel/protozoal<br>infections                                                           | 1997                         |
|                                                                                    | Liposomal Morphine sulphate                                                                 | Extended release                                                                                                          | Analgesia (post-operative)                                                               | 2004                         |

|                                                                              |                                                           |                                                                                              |                                                                               | Bobo                 |
|------------------------------------------------------------------------------|-----------------------------------------------------------|----------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|----------------------|
| Table I (continued)                                                          |                                                           |                                                                                              |                                                                               |                      |
| Name                                                                         | Material Description                                      | Nanopartide Advantage                                                                        | Indication(s)                                                                 | Year(s)<br>approve   |
| DepoDur®(Rain                                                                |                                                           |                                                                                              |                                                                               |                      |
| Pharmaceuticals)<br>Visudyne® (Bausch and<br>Lomb)                           | Liposomal Verteporfin                                     | Increased delivery to site of<br>diseased vessels;<br>photosensitive release                 | Macular degeneration,<br>wet age-related;<br>myopia; ocular<br>histoplasmosis | 2000                 |
| Doxi®(Caelyx™ (jansen)                                                       | Liposomal doxonubicin                                     | Improved delivery to site of<br>disease; decrease in systemic<br>taxicity of free drug.      | Karposi's Sarcoma;<br>Ovarian cancer;<br>multiple myeloma                     | 1995<br>2005<br>2008 |
| Abeket® (Signatau)                                                           | Liposomal Amphotericin B lipid<br>complex                 | Reduced toxicity                                                                             | Fungal infections                                                             | 1995                 |
| Curosurf®/Poractant alpha<br>(Chiesei farmaceutid)                           | Liposome-proteins SP-B and<br>SP-C                        | Increased delivery for smaller<br>volume; reduced doxicity                                   | pulmonary surfactant for<br>Respiratory Distress<br>Syndrome                  | 1999                 |
| Micelar ranoparticles combined wi                                            |                                                           |                                                                                              |                                                                               |                      |
| Estrasorb™ (Novavax)                                                         | Micellar Estradiol                                        | Controlled delivery of<br>therapeutic                                                        | Menopausal therapy                                                            | 2003                 |
| Protein nanoparticles combined wit                                           |                                                           |                                                                                              |                                                                               |                      |
| Abravane®/ABI-007<br>(Celgene)                                               | Albumin-bound paditatel<br>nanopartides                   | Improved solubility; improved<br>delivery to tumor                                           | Breast cancer<br>NSCLC<br>Pancreatic cancer                                   | 2005<br>2012<br>2013 |
| Ortak® (Esai Inc)                                                            | Engineered Protein combining<br>IL-2 and diphtheria toxin | Targeted T-cell specificity;<br>lysosomal escape                                             | Cutareous T-Cell<br>Lymphoma                                                  | 1999                 |
| Nanocrystak                                                                  |                                                           |                                                                                              |                                                                               |                      |
| Emend® (Merdk)                                                               | Aprepitant                                                | Surface area allows faster<br>absorption and increases<br>bioavailability                    | Antiemetic                                                                    | 2003                 |
| Tricor® (Lupin Atlantis)                                                     | Fenofibrate                                               | Increases bicavailability simplifies<br>administration                                       | Hyperlipidemia                                                                | 2004                 |
| Rapamune® (Wyeth<br>Pharmaceuticals)                                         | Sirolimus                                                 | Increased bicavalibility                                                                     | Immunosuppresent                                                              | 2000                 |
| Megace ES® (Par<br>Pharmaceuticals)                                          | Megestrol acetate                                         | Reduced dosing                                                                               | Anti-anorexic                                                                 | 2001                 |
| Avine all (Pfaer)                                                            | Morphine sulfate                                          | Increased drug loading and<br>bicavailability; extended<br>release                           | Psychostimulant                                                               | 2002<br>(2015)       |
| Focalin XR® (Novatis)                                                        | Devamethyl-phenidate HCI                                  | Increased drug loading and<br>bicase lability                                                | Psychostimulant                                                               | 2005                 |
| Ritalin LA® (Novartis)                                                       | Matyhiphanidate HCI                                       | Increased drug loading and<br>bicavailability                                                | Psychostimulant                                                               | 2002                 |
| Zanafew® (Acorda)                                                            | Tranidine HCl                                             | Increased drug loading and<br>bicavailability                                                | Musde relacant                                                                | 2002                 |
| Vitoss® (Stryker)                                                            | Calcium phosphate                                         | Mimics bore structure allowing<br>cell adhesion and growth                                   | Bone substitute                                                               | 2003                 |
| Ostim® (Henaeus Kulzer)<br>OsSatura® (IsoTis                                 | Hydroxyapatite<br>Hydroxyapatite                          | Mimics bore structure allowing<br>cell adhesion and growth<br>Mimics bore structure allowing | Bone substitute<br>Bone substitute                                            | 2004                 |
| Orthobiologics)<br>NanOss® (Rti Surgical)                                    | Hydroxyapatte                                             | cell adhesion and growth<br>Mimics bore structure allowing                                   | Bone substitute                                                               | 2003                 |
| EquivaBone® (Zimmer                                                          | Hydroxyapatte                                             | cell adhesion and growth<br>Mimics bore structure                                            | Bone substitute                                                               | 2005                 |
| Biomet)<br>Invess@Sustema@                                                   | Paliperidone Palmitate                                    | Allows slow release of injectable                                                            | Schizophrenia                                                                 | 2009                 |
| (Janszen Pharms)                                                             | - and the second second                                   | low solubility drug                                                                          | Schizoafective Disorder                                                       | 2014                 |
| Ryanodex® (Eagle<br>Pharmaceuticals)<br>Inorganic and metallic nanoparticles | Dantrolene sodium                                         | Faster administration at higher<br>dses                                                      | Malignant hypothermia                                                         | 2014                 |
| Nanotherm® (MagForce)                                                        | lion aide                                                 |                                                                                              | Gioblastoma                                                                   | 2010                 |

| ⊗ s |
|-----|
|     |

🕗 Springer

| Nanomedicines - Approved Products and Clinical Trials |                                                                     |                                                                                            |                                                                        |                     |
|-------------------------------------------------------|---------------------------------------------------------------------|--------------------------------------------------------------------------------------------|------------------------------------------------------------------------|---------------------|
| Table I (continued)                                   |                                                                     |                                                                                            |                                                                        |                     |
| Name                                                  | Material Description                                                | Nanoparti de Advantage                                                                     | Indication(s)                                                          | Year(s)<br>approved |
|                                                       |                                                                     | Alows cell uptalie and<br>introduces<br>superparamagnetism                                 |                                                                        |                     |
| Feaheme ** /erum oxytol<br>(AMAG pharmaceuticals)     | Ferumosytal SPION with<br>polyglucose sorbital<br>carboxymeth/ether | Magnetite suspension allows for<br>prolonged steady release,<br>decreasing number of dozes | Deficiency anemiairon<br>deficiency in chronic<br>kidney disease (OKD) | 2009                |
| Venofer® (Luitpold<br>Pharmaceuticals)                | Iron surrose                                                        | Allows increased dose                                                                      | iron deficiency in duronic<br>kidney disease (CKD)                     | 2000                |
| Ferrlech® (Sanofi Avertis)                            | Sodium ferric glucorate                                             | Allows increased dose                                                                      | iron deficiency in chronic<br>kidney disease (CKD)                     | 1999                |
| INFeD® (Sanoli Aventis)                               | Iron dextran (low MW)                                               | Allows increased dose                                                                      | iron deficiency in chronic<br>kidney disease (CKD)                     | 1957                |
| Dedron/8/Deferrum/8<br>(Sanof Avertis)                | Iron dextran (high MW)                                              | Allows increased dose                                                                      | iron deficiency in chronic<br>kidney disease (CKD)                     | 1957                |
| Feridex@/Endorem@<br>(AMVG pharmaceuticals)           | SPION coated with destran                                           | Superparamagnetic character                                                                | Imaging agent                                                          | 1996 (2008)         |
| GastroMARK "; umirem®<br>(AMAG pharmaceuticals)       | SPION coated with silicone                                          | Superparamagnetic character                                                                | Imaging agent                                                          | 2.001 (2009)        |

#### Bobo et al, Pharm Res (2016)

# Approved Nanoparticulate Nanomedicines Only Liposome Drug Products

- 1. Doxil/Caelyx (doxorubicin)
- 2. Ambisome (amphotericin B)
- 3. DaunoXome (daunorubicin)
- 4. Myocet (doxorubicin)
- 5. Abelcet (amphotericin B)
- 6. Lipo-Dox (doxorubicin)
- 7. Marquibo = Onco-TCS (vincristine)
- 8. Onivyde (irinotecan)
- 9. CPX-351/Vyxeos (cytarabine/daunorubicin)
- 10. Arikayce (amikacin, inhalation product)

#### NDC 17314-9600-2 **DOXIL**\* (doxorubicin HCl liposome injection)

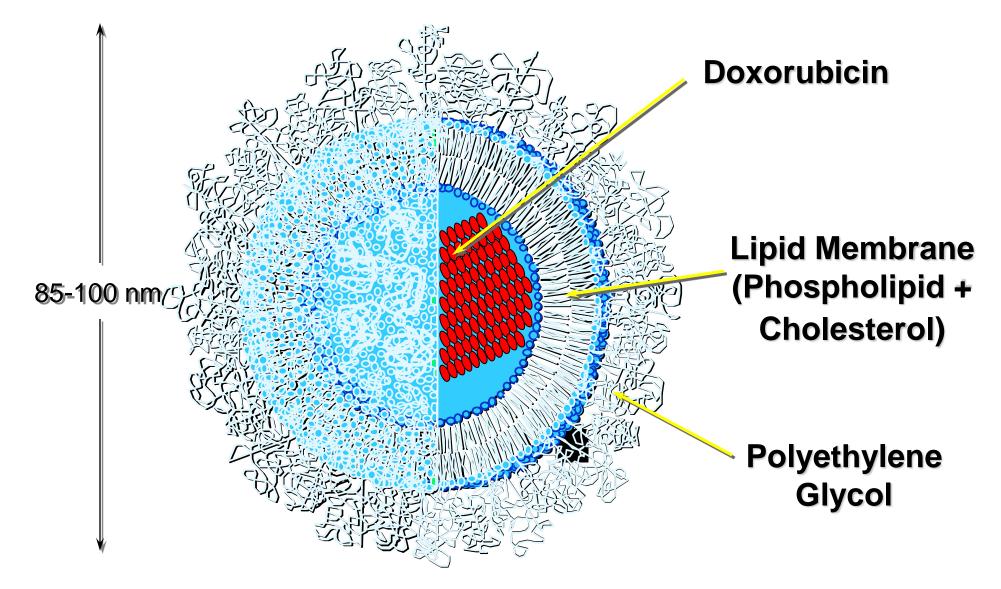
50 mg in 25 mL (2 mg/mL) sterile, single use vial

LIPOSOMAL FORMULATION DO NOT SUBSTITUTE

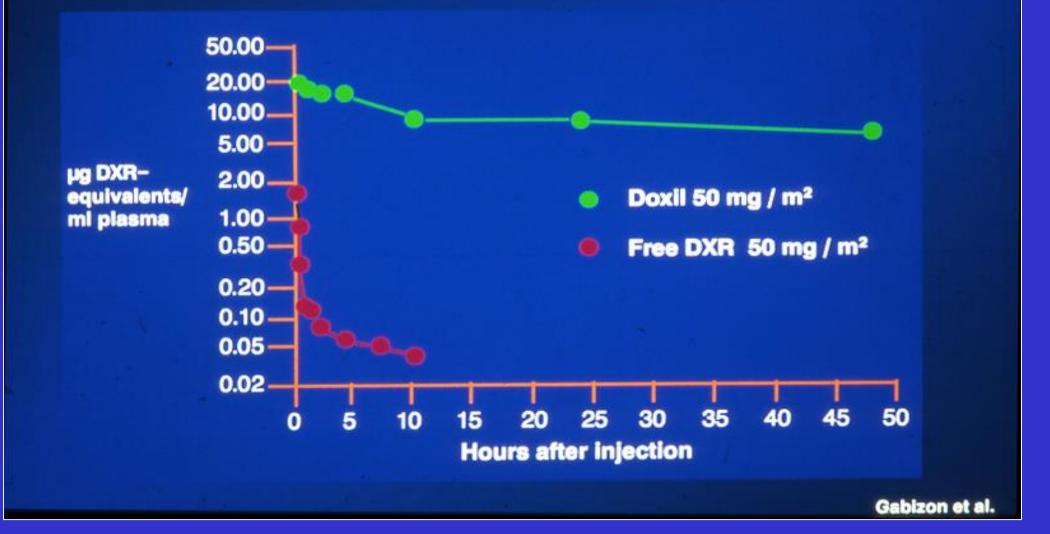
FOR INTRAVENOUS INFUSION ONLY



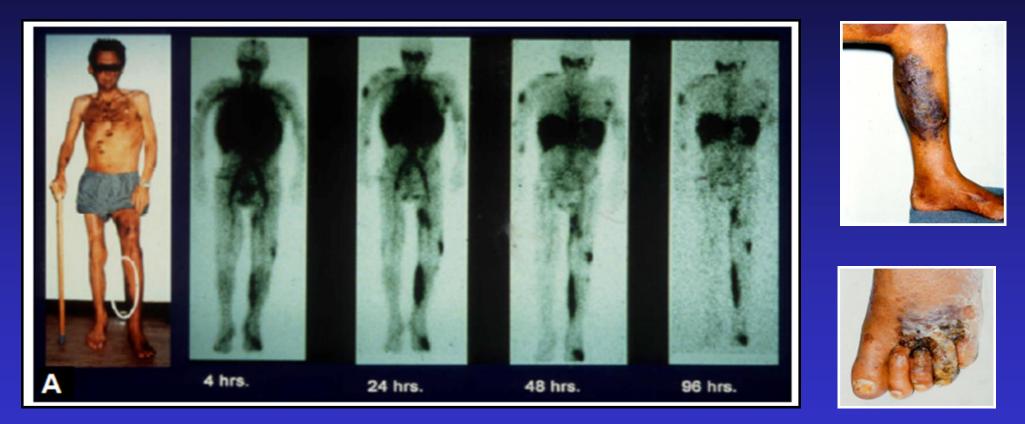
An ALZA STEALTH® Technology Product







© 2004 GSM

Reg: KS, ovariumkanker, borstkanker, myeloma


## **Structure of Doxil**®



### **Clinical PK of DXR in LCL (PEG-HSPC-Chol)**



## Imaging EPR in patients Harrington et al., Clin Cancer Res 2001



Doxil in Kaposi sarcoma : highly efficient EPR => highly efficient treatment

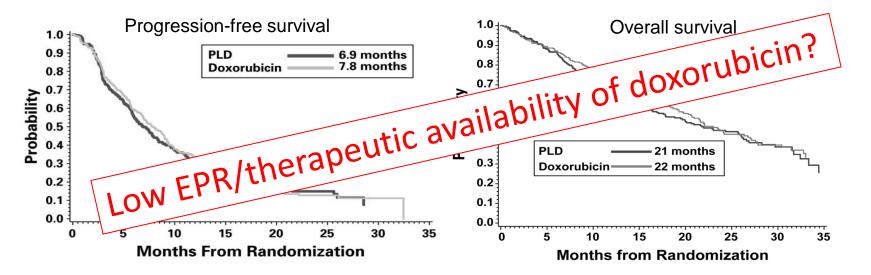
: 1 CR + 60/133 PR (46%) vs. ABV 31/125 PR (25%)

# Doxil/Caelyx vs. free DOX



#### Less risk of developing cardio-toxicity

|                                                         | No. of patients <sup>a</sup>          |                                       |  |
|---------------------------------------------------------|---------------------------------------|---------------------------------------|--|
|                                                         | PLD <sup>b</sup><br>( <i>n</i> = 254) | Doxorubicin <sup>e</sup><br>(n = 255) |  |
| Patients who developed cardiotoxicity<br>(LVEF defined) | 10                                    | 48                                    |  |
| Cardiotoxicity (with signs and symptoms<br>of CHF)      | 0                                     | 10                                    |  |
| Cardiotoxicity (no signs and symptoms<br>of CHF)        | 10                                    | 38                                    |  |
| Patients with signs and symptoms of<br>CHF only         | 2                                     | 2                                     |  |

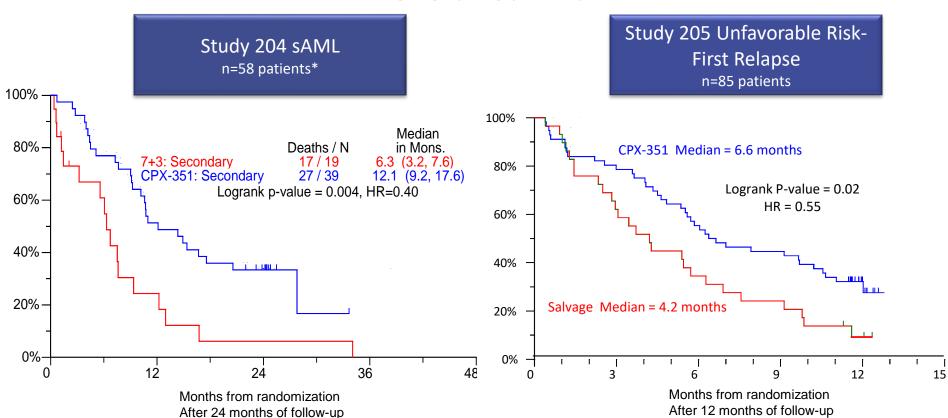

LVEF: left ventricular ejection fraction, CHF: congestive heart failure

O'Brien, 2004, Ann. Oncol.:

- Phase III trial
- Pegylated liposomal doxorubicin vs. conventional doxorubicin
- Metastatic breast cancer



#### Comparable survival




# Reason for Approval Doxil in 1995

Therapeutic Index increased: Efficacy / Toxicity

Targeted nanomedicines can favorably change the efficacy/safety balance

# Study 204 & 205: Significant Improvement in Overall Survival for CPX-351 Treatment Seen in sAML and Unfavorable Risk – First Relapse AML

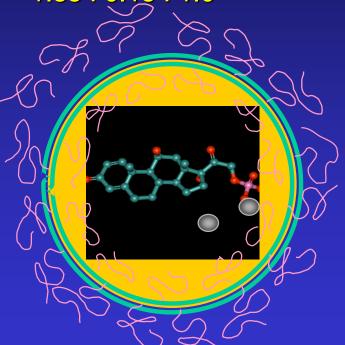


**Overall Survival** 

1 patient on the 7+3 arm was alive at 12 months after crossing over and responding to CPX-351 treatment



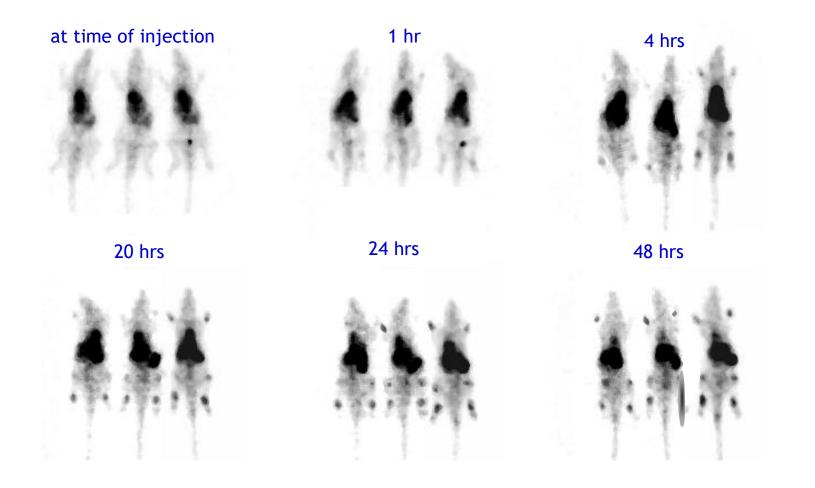
# Liposomes in clinical trials (24)


- Lipoplatin (cisplatin)
- ThermoDox (doxorubicin)
- 9NC-LP (9-nitrocamptothecin)
- SPI-077 (cisplatin),
- Lipoxal(oxaliplatin)
- EndoTAG-1 (paclitaxel),
- OSI-211 (lutotecan),
- LE-DT (docetaxel),
- LEP-ETU (paclitaxel)
- TKM-080301
- PLK1( siRNA)
- Aru027, PKN3( siRNA)

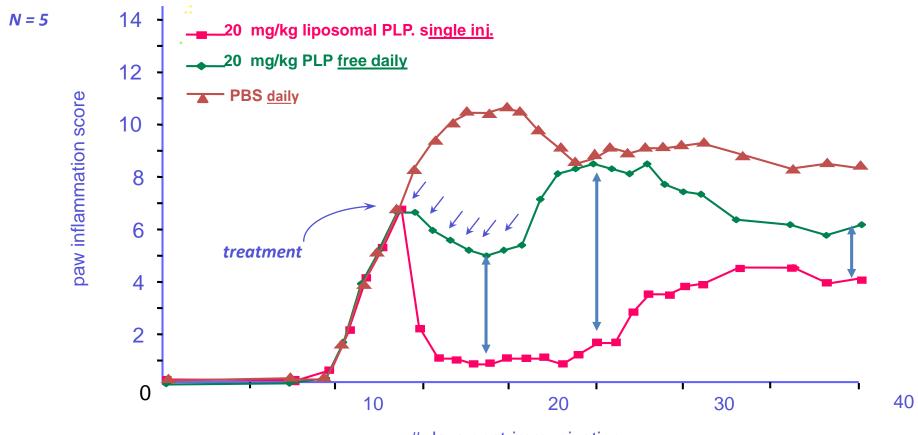
- 2B3-101 (doxorubicin)
- MTL-CEBPA (CEBPA siRNA)
- TL1 (topotecan)
- IHL-305 (irinotecan)
- ATI-1123 (docetaxel)
- Alocrest (vinorelbine)
- LiPlaCis (cisplatin)
- MCC-465 (doxorubicin)
- SGT-53 (p53 gene)
- Nanocort (prednisolone)
- RNL (Image-guided delivery of rhenium nanoliposome)
- Patisiran (siRNA)

### glucocorticoids encapsulated in PEG-liposomes

properties of initial preparation:


- lipid bilayer composition: DPPC : PEG-DSPE : Chol = 1.85 : 0.15 : 1.0
- size: diameter ± 90 nm
- glucocorticoid: prednisolone phosphate
- encapsulation efficiency: 3 4 %
- 1 ml preparation contains (on an average):
  - · 50 mg (60 µmol) total lipid
  - · 4 mg prednisolone-phosphate

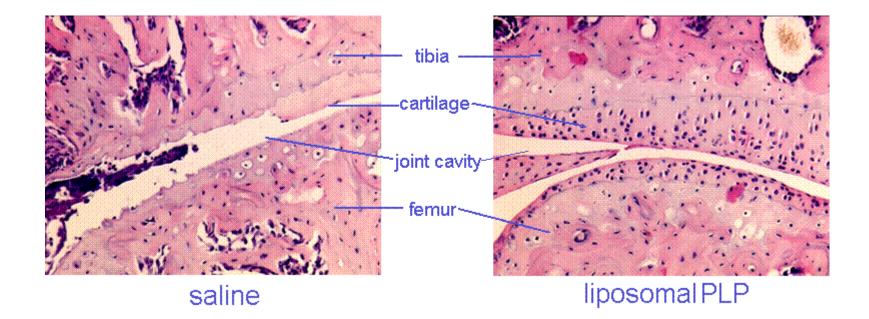



Target site accumulation in preclinical models

EPR effects are stronger in case of severe inflammation (vs. tumors)

#### preclinical results in rat arthritis: inflamed joint targeting

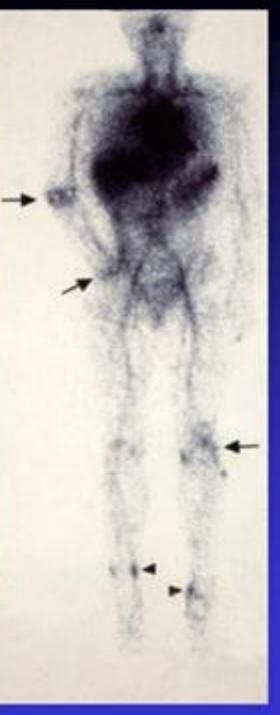



#### efficacy results Nanocort in rat arthritis: rapid, intense and sustained



# days post-immunization

Mouse knee joint sections: effect on cartilage erosion


1 week after treatment





when quenching the flares

... silence the tyrant!



# Imaging of inflamed joint targeting in humans

<sup>99m</sup>Tc - labeled PEG-liposomes

whole body scintigraphy at 24 hr p.i.

long circulation time of liposomal nanoparticles (by coating with PEG)
stability in bloodstream: no release of incorporated drug

### Disease indications that we pursue with clinical studies

#### Nanocort (i.v. pegylated liposomal prednisolone phosphate)

- Rheumatoid Arthritis
- Multiple Sclerosis
- Atherosclerosis
- Arteriovenous Fistula failure
- Inflammatory Bowel Disease (Most recent result: 70% response rate)

#### Oncocort (i.v. pegylated liposomal dexamethasone phosphate)

- Advanced Prostate Cancer (bone metastasis)
- Multiple Myeloma

#### Innovicort (i.v. pegylated liposomal triamcinolone acetonide phosphate)

• Uveitis (together with SNEC hospital Singapore)

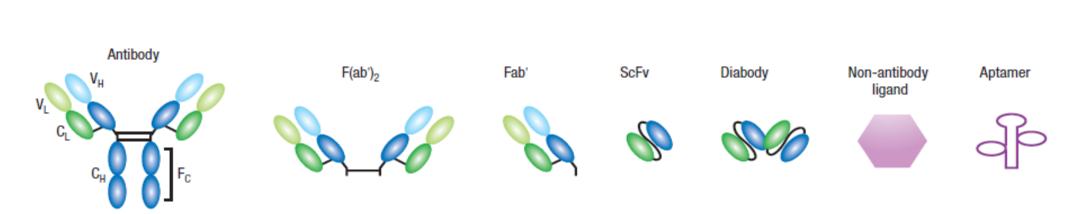
# Liposomes in clinical trials (24)

- Lipoplatin (cisplatin)
- ThermoDox (doxorubicin)
- 9NC-LP (9-nitrocamptothecin)
- SPI-077 (cisplatin),
- Lipoxal(oxaliplatin)
- EndoTAG-1 (paclitaxel),
- OSI-211 (lutotecan),
- LE-DT (docetaxel),
- LEP-ETU (paclitaxel)
- TKM-080301
- PLK1( siRNA)
- Aru027, PKN3( siRNA)

- 2B3-101 (doxorubicin)
- MTL-CEBPA (CEBPA siRNA)
- TL1 (topotecan)
- IHL-305 (irinotecan)
- ATI-1123 (docetaxel)
- Alocrest (vinorelbine)
- LiPlaCis (cisplatin)
- MCC-465 (doxorubicin)
- SGT-53 (p53 gene)
- Nanocort (prednisolone)
- RNL (Image-guided delivery of rhenium nanoliposome)
- Patisiran (siRNA)

### **Examples of Cancer Nanomedicine Formulations in Clinical Development**

Nanoparticles (12): BA-003 (doxorubicin), DHAD-PBCA-NPs (mitoxantrone), BIND-014 (docetaxel), CRLX101 (camptothecin), IT-101 (camptothecin), Rexin-G (dnG1 pDNA), ABI-008 (docetaxel), ABI-009 (rapamycin), C-Visa-BikDD (BikDD pDNA), Nanoxel (paclitaxel), Docetaxel-NP (docetaxel), CALAA-01 (anti-RRM2 siRNA)


Polymer drug conjugates (9): Oncaspar (asparaginase), Xyotax (CT-2103) (paclitaxel), Taxoprexin (paclitaxel), PK1 (doxorubicin), PegAsys/PegIntron (IFN-alpha2a/b), ProLindac (oxaliplatin), AP 5346 (diaminocyclohexane platinum), DEP (docetaxel), XMT-1001 (CPT)

Antibody drug conjugates: most successful but often excluded from lists

• Passive targeting (- targeting ligand)

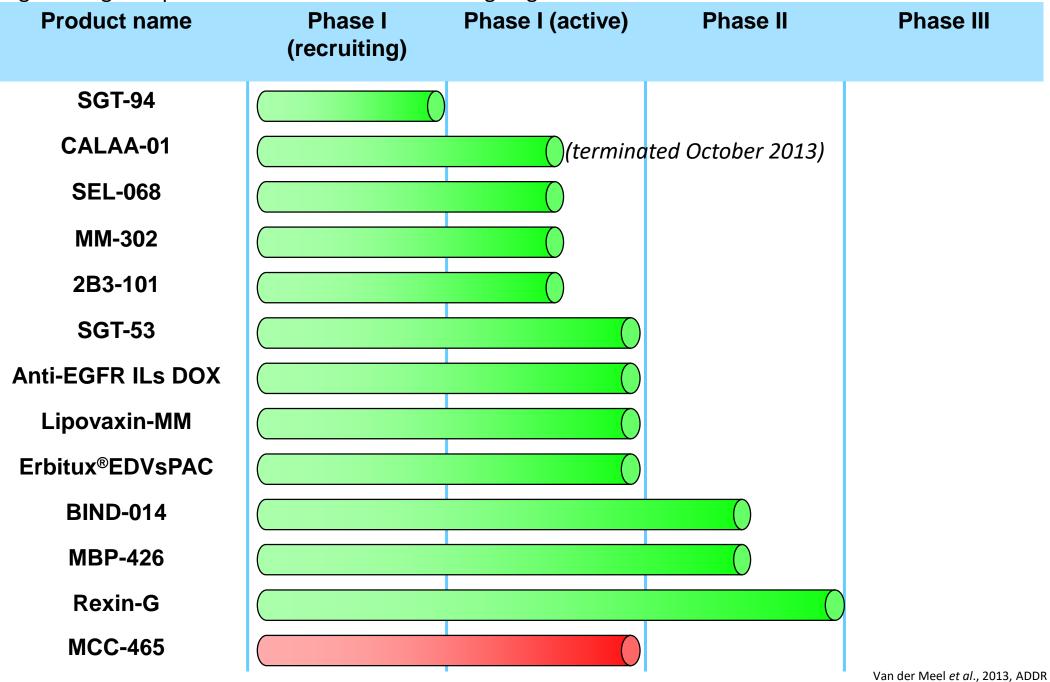
Active targeting (+ targeting ligand)

#### Traditional targeting ligands

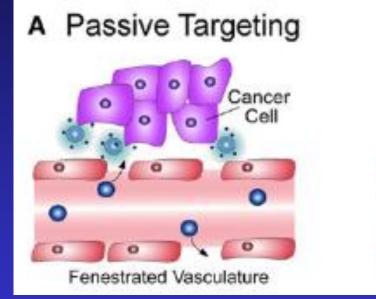


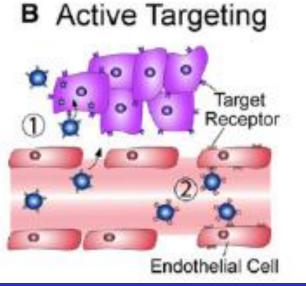
#### Ligand-targeted particulate nanomedicines undergoing clinical evaluation

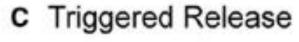
Lipid-based nanomedicines

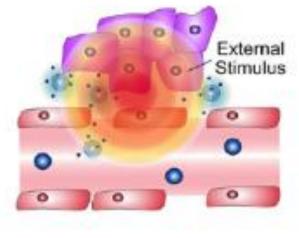

| при-разе и нинот            | re ur car car car car car car car car car ca |         |                                                              |                                                  |                                       |                                                                                    |                          |
|-----------------------------|----------------------------------------------|---------|--------------------------------------------------------------|--------------------------------------------------|---------------------------------------|------------------------------------------------------------------------------------|--------------------------|
| MBP-426                     | Mebiopharm                                   | 50–200  | Oxaliplatin                                                  | Protein                                          | Transferrin receptor                  | Metastatic gastric,<br>gastro esophageal<br>junction, esophageal<br>adenocarcinoma | Phase II                 |
| SGT-53                      | SynerGene<br>Therapeutics                    | 90      | p53 plasmid DNA                                              | Antibody fragment<br>(scFv)                      | Transferrin receptor                  | Solid tumors                                                                       | Phase Ib                 |
| SGT-94                      | SynerGene<br>Therapeutics                    | 90      | RB94 plasmid DNA                                             | Antibody fragment<br>(scFv)                      | Transferrin receptor                  | Solid tumors                                                                       | Phase I                  |
| MM-302                      | Merrimack<br>Pharmaœuticals                  | 75–110  | Daxorubicin                                                  | Antibody fragment<br>(scFv)                      | ErbB2 (HER2)                          | Breast canœr                                                                       | Phase I                  |
| Lipovaxin-MM                | Lipotek                                      |         | Melanoma<br>antigens<br>and IFNγ                             | Single domain<br>antibody (dAb)<br>fragment (VH) | DC-SIGN                               | Melanoma vaccine                                                                   | Phase I                  |
| Anti-EGFR<br>ILs-DOX        | University Hospital Basel                    | 85      | Daxorubicin                                                  | Antibody fragment<br>(Fab')                      | EGFR                                  | Solid tumors                                                                       | Phase I                  |
| 2B3-101                     | to-BBB Technologies                          |         | Doxorubicin                                                  | Protein                                          | Glutathione transporters              | Solid tumors                                                                       | Phase I/IIa              |
| MCC-465                     | Mitsubishi Pharma<br>Corporation             | 140     | Daxorubicin                                                  | Antibody fragment<br>(F(ab)'2)                   | Not characterized                     | Advanced gastric<br>cancer                                                         | Phase I<br>(discontinued |
| Polymer-based nan           | omedicines                                   |         |                                                              |                                                  |                                       |                                                                                    |                          |
| BIND-014                    | BIND Biosciences                             | 100     | Docetaxel                                                    | Small molecule                                   | Prostate specific membrane<br>antigen | Solid tumors                                                                       | Phase II                 |
| CALAA-01                    | Calando Pharmaceuticals                      | 50-70   | RRM2 siRNA                                                   | Protein                                          | Transferrin receptor                  | Solid tumors                                                                       | Phase I                  |
| SEL-068                     | Selecta Biosciences                          | 150-250 | Nicoti ne antigen,<br>T-helper cell peptide,<br>TLR agonist  | Small molecule                                   | Antigen presenting cells              | Smoking cessation vaccine                                                          | Phase I                  |
| Bacterially-derived         | minicell                                     |         |                                                              |                                                  |                                       |                                                                                    |                          |
| Erbitux®EDVs <sub>PAC</sub> | EnGeneIC                                     | 400     | Paclitaxel                                                   | Antibody                                         | EGFR                                  | Solid tumors                                                                       | Phase II                 |
| Retroviral vector           |                                              |         |                                                              |                                                  |                                       |                                                                                    |                          |
| Rexin-G                     | Epeius Biotechnologies                       | 100     | Cytocidal dominant<br>negative<br>cyclin-G1<br>DNA construct | Small molecule                                   | Collagen                              | Sarcoma, osteosarcoma,<br>pancreatic cancer                                        | Phase II <sup>a</sup>    |

<sup>a</sup> Approved in the Republic of the Philippines under an expanded program as a first-line and adjuvant therapy for pancreatic and breast cancers, and as a second-line therapy for all chemotherapy-resistant solid malignancies.
Van der Meel *et al.*, 2013, ADDR


### Clinical Utility of Targeting Ligands


### has NOT (yet) been unambiguously proven


#### Ligand-targeted particulate nanomedicines undergoing clinical evaluation




# Main Drug Targeting Modes







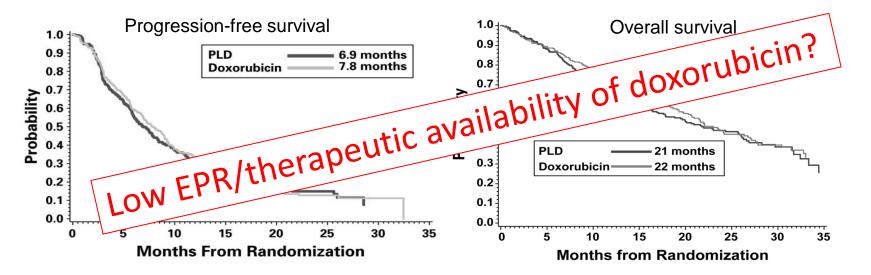


### Doxil/Caelyx vs. free DOX



#### Less risk of developing cardio-toxicity

|                                                         | No. of patie                          | ents <sup>a</sup>                     |  |
|---------------------------------------------------------|---------------------------------------|---------------------------------------|--|
|                                                         | PLD <sup>b</sup><br>( <i>n</i> = 254) | Doxorubicin <sup>e</sup><br>(n = 255) |  |
| Patients who developed cardiotoxicity<br>(LVEF defined) | 10                                    | 48                                    |  |
| Cardiotoxicity (with signs and symptoms<br>of CHF)      | 0                                     | 10                                    |  |
| Cardiotoxicity (no signs and symptoms<br>of CHF)        | 10                                    | 38                                    |  |
| Patients with signs and symptoms of<br>CHF only         | 2                                     | 2                                     |  |


LVEF: left ventricular ejection fraction, CHF: congestive heart failure

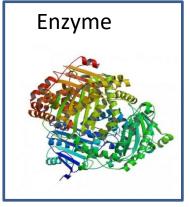
O'Brien, 2004, Ann. Oncol.:

- Phase III trial
- Pegylated liposomal doxorubicin vs. conventional doxorubicin
- Metastatic breast cancer

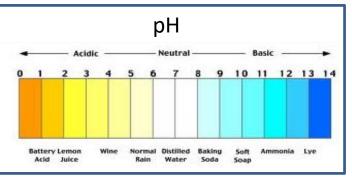


#### Comparable survival




### How to Improve Efficacy?

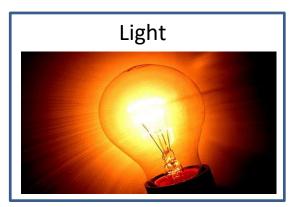
Influencing Major Efficacy Determinants:


 Improve Accessibility/EPR (e.g.vasodilators, hyperthermia)
 Enhance Intratumoral Drug Release

### Solution: intratumoral triggered release

#### Use intrinsic or extrinsic stimulus to trigger release

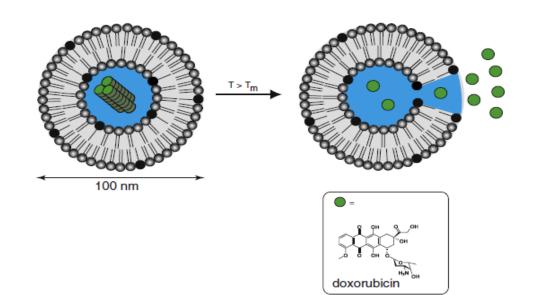


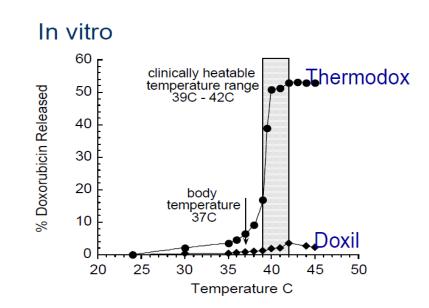

Meers, 2001, ADDR



Simões et al., 2004, ADDR



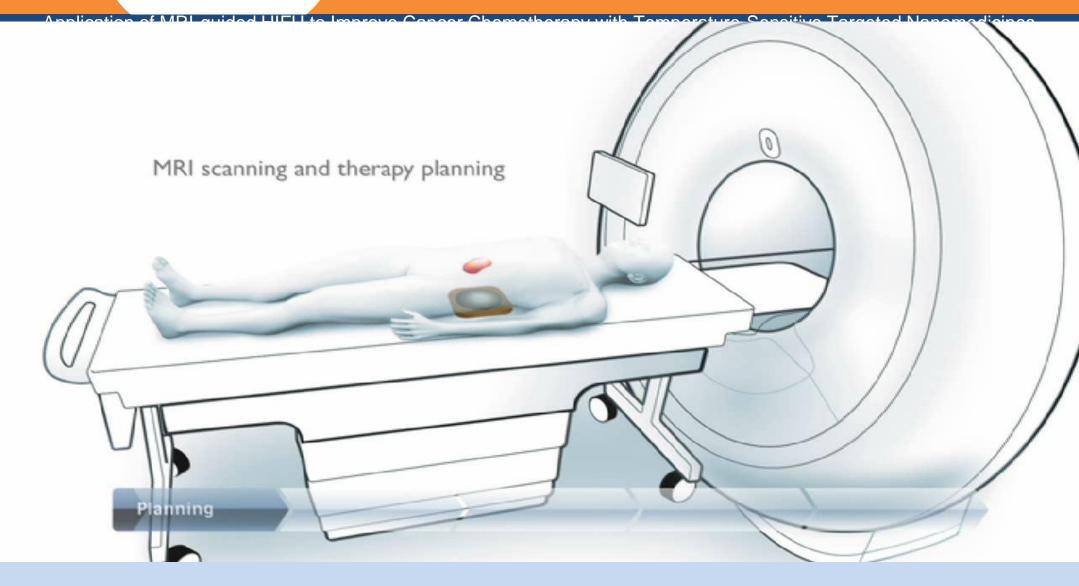

Grull et al., 2012, JCR




You et al., 2010, ACS Nano

### **HIFU-triggered drug delivery from ThermoDox**

### No need for EPR!










Center for Translational Molecular Medicine



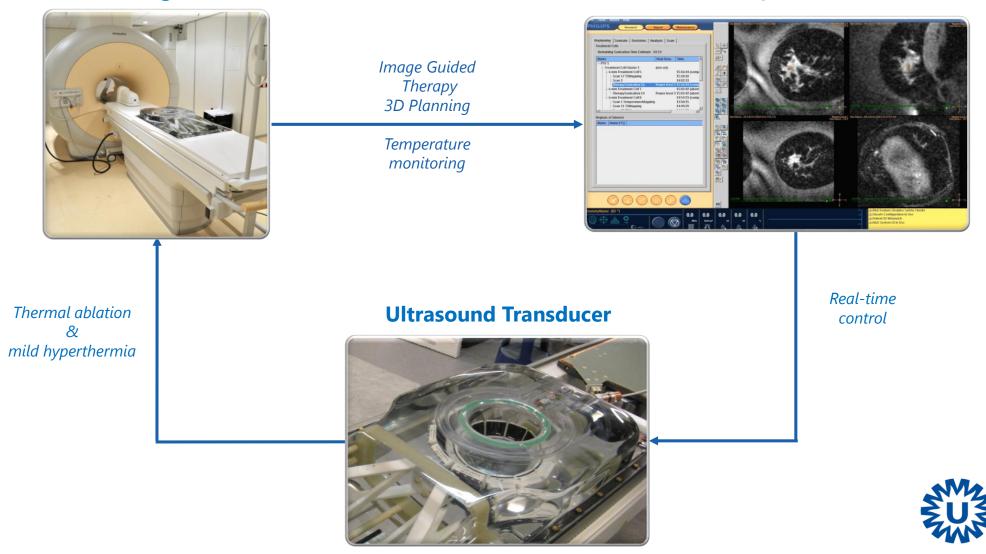
#### Real-time Monitoring of Intravascular Triggered Drug Release by ThermoDox

Field of view: 600x600 microns Thermodox bolus injection: 10" to 50" 1 s 200 488 nm 660 nm Native Doxorubicin AngioSense<sup>®</sup> 680EX fluorescence Blood vessel staining 680 - 800 nm 500 - 630 nm Wistar rats **Animal Model** Rat subcutaneous rhabdomyosarcoma tumor in hind limb Thermodox<sup>®</sup> (Celsion Corp., USA) • Phase transition temperature: 42 C Drug ٠ Clinical dose injected intravenously: 4 mg/kg ٠ Derieppe et. al. 2015, European Molecular Imaging Meeting

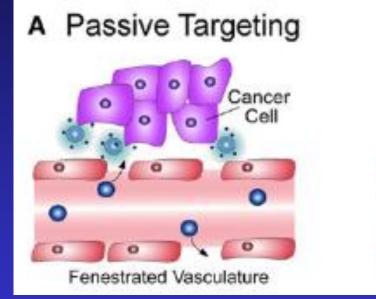


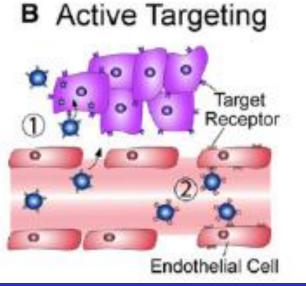


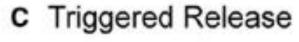
University Medical Center Utrecht

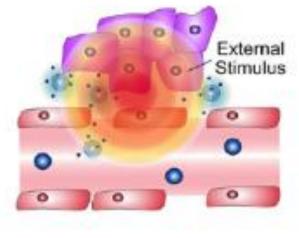

The Netherlands

|   | The Netherlands |                                                                    |                                                                |  |  |  |  |  |
|---|-----------------|--------------------------------------------------------------------|----------------------------------------------------------------|--|--|--|--|--|
|   | 160             | Fibered-based Confocal Fluorescence<br>Microscopy (Mauna Kea Tech) |                                                                |  |  |  |  |  |
|   | 120             |                                                                    |                                                                |  |  |  |  |  |
|   | 80              |                                                                    |                                                                |  |  |  |  |  |
|   | 40              | CB                                                                 | A Charles                                                      |  |  |  |  |  |
|   | 0               | Diameter: 1.5 mm<br>(mini-invasive,                                | 6                                                              |  |  |  |  |  |
|   |                 |                                                                    |                                                                |  |  |  |  |  |
| , | Waterba         |                                                                    |                                                                |  |  |  |  |  |
|   |                 |                                                                    |                                                                |  |  |  |  |  |
|   |                 | <ul> <li>120</li> <li>80</li> <li>40</li> <li>0</li> </ul>         | 160Fibered-based Confoca<br>Microscopy (Mauna1208040Example 15 |  |  |  |  |  |


### **MR guided High Intensity Focused Ultrasound**


#### **MR with integrated HIFU**

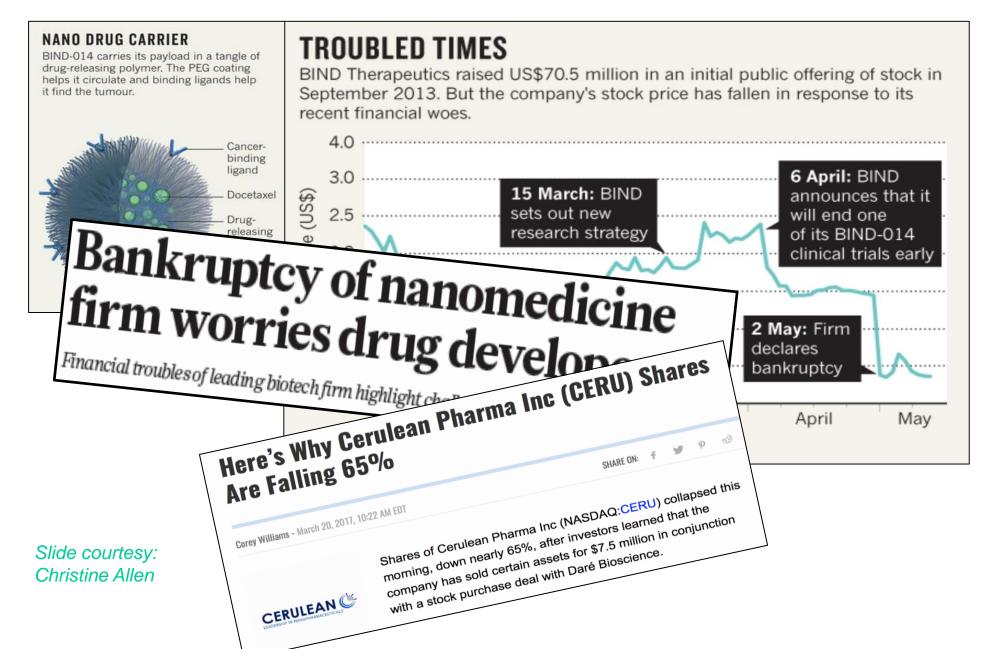

#### **Therapy Console**




# Main Drug Targeting Modes










### Wave of disappointment



### 2016 : Annus horribilis





# Year 2016 examples

Journal of Controlled Release 244 (2016) 108-121



Contents lists available at ScienceDirect

### Journal of Controlled Release

journal homepage: www.elsevier.com/locate/jconrel



Review article

To exploit the tumor microenvironment: Since the EPR effect fails in the clinic, what is the future of nanomedicine?



F. Danhier

Université catholique de Louvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Avenue Mounier, 73 bte B1 73.12, 1200 Brussels, Belgium

## In the Abstract.

- "The basic rationale of the design and development of nanomedicines in cancer therapy is failing.."
- "The EPR effect works in rodents not in humans."
- "It is probably time to dethrone the EPR effect.."

# Analysis of nanoparticle delivery to tumours

Stefan Wilhelm, Anthony J. Tavares, Qin Dai, Seiichi Ohta, Julie Audet, Harold F. Dvorak and Warren C. W. Chan

Abstract | Targeting nanoparticles to malignant tissues for improved diagnosis and therapy is a popular concept. However, after surveying the literature from the past 10 years, only 0.7% (median) of the administered nanoparticle dose is found to be delivered to a solid tumour. This has negative consequences on the translation of

(Wilhelm et al, Nat Rev Mater 2016)

## In the Abstract.

- "..after surveying the literature from the past 10 years, only 0.7% (median) of the administered nanoparticle dose is found to be delivered to a solid tumour."
- "This has negative consequences on the translation of nanotechnology for human use.."
- "We .. present a 30-year research strategy to overcome this fundamental limitation."

#### ARTICLE IN PRESS

#### Journal of Controlled Release xxx (xxxx) xxx-xxx



### The drug delivery field at the inflection point: Time to fight its way out of the egg

#### Kinam Park<sup>a,b,\*</sup>

<sup>a</sup> Purdue University, Department of Biomedical Engineering, West Lafayette, IN 47907, USA
<sup>b</sup> Purdue University, Department of Pharmaceutics, West Lafayette, IN 47907, USA

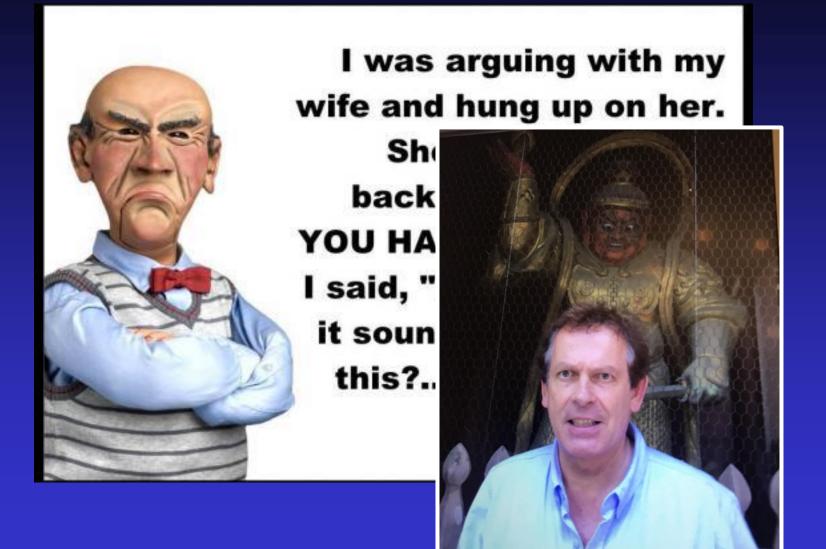
#### ARTICLE INFO

Keywords: Nano-sized drug delivery systems Nanoformulations Clinical trials Inflection point Inconvenient truth Advantage of nanoformulations Limitations of nanoformulations Future of drug delivery

#### ABSTRACT

The world is becoming a better place, in part, by breakthrough findings by scientists. In the drug delivery field, many breakthrough formulations have been achieved helping patients deal with various diseases effectively. The recent progress, however, has been slowing down, and many important drug delivery problems have not been resolved. They can be overcome by understanding the causes and finding the remedies. For the last three decades, the field has been overwhelmed by nanotechnology, nanomedicine, and many nano-sized drug delivery systems. Disappointing outcomes of nano-sized formulations (nanoformulations) in clinical studies indicate that our overall approach of nanomedicine needs serious reevaluation. The limited advantages of nanoformulations were drastically exaggerated, and the assumptions used in nanomedicine and nanoformulations turned out to be inapplicable to clinical applications. The drug delivery field is at the strategic inflection point, and we all have to face the reality by absorbing the inconvenient truth and fight our way out of the egg to break the ill-conceived illusion of nanomedicine. Scientists are proud of their independent thinking and their work that can change the world, but the current climate does not allow them to be true scientists. The future of the drug delivery field depends on how effectively we can find talented young scientists with motivation, cultivate them with resources, provide them with an environment for the free exchange of ideas, and nurture them with purpose, passion, and the conviction of doing meaningful science.

## Some Quotes


.. overall outcome of the nanomedicine field is a fatal failure.

.. assumptions used in nanomedicine and nanoformulations turned out to be inapplicable to clinical applications.

.. absorb the inconvenient truth .. to break the ill-conceived illusion of nanomedicine.

.. EPR effect is nothing more than trying to see a pattern when it is simply a random phenomenon.

.. spend the next few decades reshaping the field with a new generation of scientists with new ideas and new research tools.







### Wave of disappointment warranted?



Nanoparticles and Drug Targeting: Should we be disappointed?

- Setting the 'debate'
- 0.7%ID tumor accumulation
- Tumor targeting via EPR
- Present and future

# Analysis of nanoparticle delivery to tumours

Stefan Wilhelm, Anthony J. Tavares, Qin Dai, Seiichi Ohta, Julie Audet, Harold F. Dvorak and Warren C. W. Chan

Abstract | Targeting nanoparticles to malignant tissues for improved diagnosis and therapy is a popular concept. However, after surveying the literature from the past 10 years, only 0.7% (median) of the administered nanoparticle dose is found to be delivered to a solid tumour. This has negative consequences on the translation of

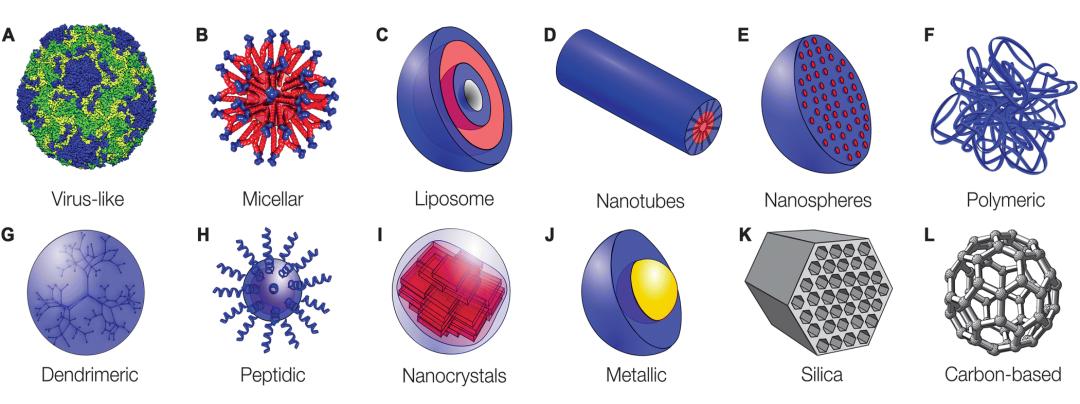
(Wilhelm et al, Nat Rev Mater 2016)

### INTUITION OF REALITY

ADHYÄTMA PRAKÄSHA KÄRYÄLAYA HOLENARSIPUR (Hassan District, Karnataka State) PIN Code No. 573 211

## Antibody-based therapy of solid cancer

• Clinically and commercially successful


-annual sales: about 20 billion USD for solid tumour therapy alone

examples: the antibody drug conjugates
 Kadcyla (trastuzumab emtansine) and Adcetris
 (brentuximab vedotin)

 Antibodies do not target tumours more efficiently

- 0.07 7% ID (mice and men)
- % target accumulation is not a goal in itself

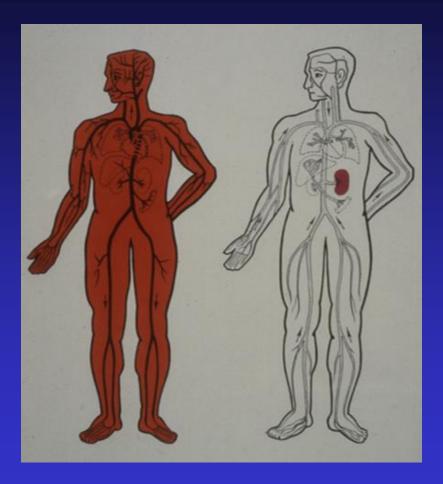
# Nanoparticle types: often unfavourable PK

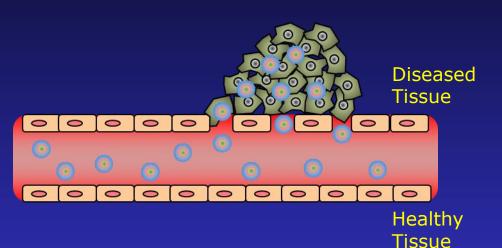


Perspective/Meta-analysis: NP Delivery to Tumours Wilhelm et al, Nat Rev Mat 1, 16014, 2016

### NP (differing in size, shape, charge)

Inorganic (gold, silica, iron oxide, quantum dots, other) Organic (dendrimers, liposomes, hydrogels, polymeric, other)


#### Main outcome (based on 117 manuscripts)


"In preclinical tumor models, on average,

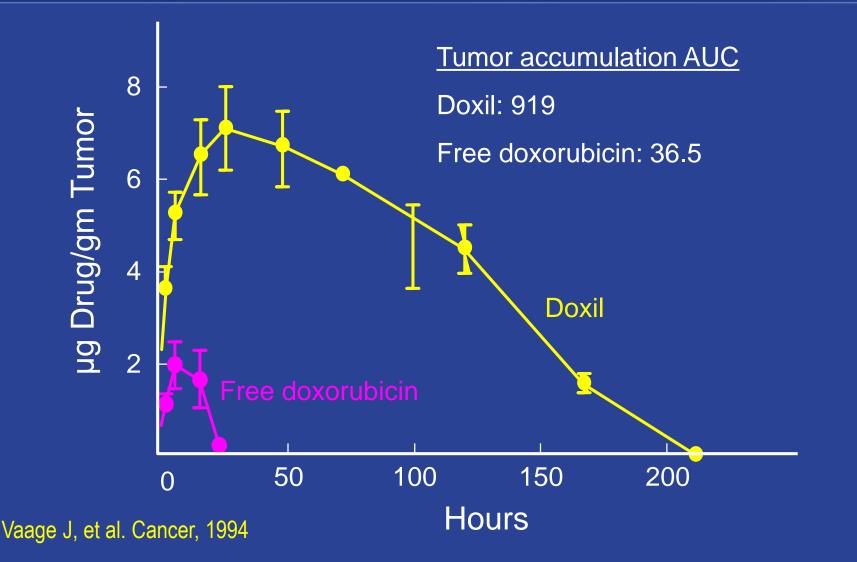
only 0.7% of the injected dose of intravenously administered nanoparticles accumulates in tumours"



### Passive Drug Targeting Utilising EPR Requirements






#### Passive Targeting requires

- Nanosize
- Long circulation
- No/limited drug release in bloodstream

# Variable tumour accumulation of PEG-liposomes in animal models

### Up to 1-10% ID after IV administration

# Doxorubicin Levels in Prostate Carcinoma Xenograft



Slide 79

Tumour accumulation of PEG-liposomes in preclinical models

Up to 1-10% ID after IV administration
Compared to free drugs: strong improvement

# And in the clinic?

Early examples of tumour accumulation (EPR) of PEG-liposomes in patients:

- Vescan (80s)
- Doxil (80/90s)

# Vescan Liposomes for Imaging rigid and small (40-70 nm): long circulation 111InCl<sub>3</sub> actively loaded with ionophore

| Per 100 mg lipid                        | mg                          |
|-----------------------------------------|-----------------------------|
| L-Aistearoyl/phosphatidylcholine (DSPC) | 80.70                       |
| Cholesterol                             | 19.30                       |
| Nitrilotriacetic Acid (trisodium salt)  | 0.03                        |
| In-111C1 <sub>3</sub> MBq (µCi) 2.5-37  | (250 - 1000<br>See Table 1) |
| Ionophore A23187                        | 0.10                        |

Vescan (Vestar Inc, 1984, 400 patients)

Successful tumor imaging of a wide variety of solid tumors (no quantification) with small, rigid liposomes (40-70nm, Indium-labeled)

 Table 1 Vescan clinical findings for 100 mg lipid dose from a carcinoma

 Phase III trial (Presant et al., 1994)

| Carcinoma        | Detected | Total | Rate   |
|------------------|----------|-------|--------|
| Breast           | 3        | 5     | 60.0%  |
| Lung             | 10       | 15    | 66.7%  |
| Head & Neck      | 9        | 9     | 100.0% |
| Other Tumors     | 5        | 9     | 55.6%  |
| Total All Tumors | 27       | 38    | 71.1%  |
| Primary Sites    | 10       | 12    | 83.3%  |
| Metastases       | 17       | 26    | 65.4%  |

Journal of Controlled Release 244 (2016) 108-121



Contents lists available at ScienceDirect

Journal of Controlled Release

journal homepage: www.elsevier.com/locate/jconrel



Review article

To exploit the tumor microenvironment: Since the EPR effect fails in the clinic, what is the future of nanomedicine?



F. Danhier

Université catholique de Louvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Avenue Mounier, 73 bte B1 73.12, 1200 Brussels, Belgium

#### NDC 17314-9600-2 **DOXIL**\* (doxorubicin HCl liposome injection)

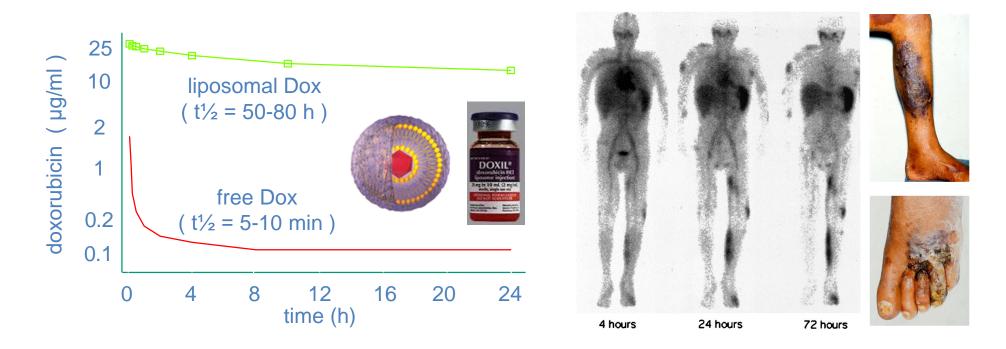
50 mg in 25 mL (2 mg/mL) sterile, single use vial

LIPOSOMAL FORMULATION DO NOT SUBSTITUTE

FOR INTRAVENOUS INFUSION ONLY



An ALZA STEALTH® Technology Product





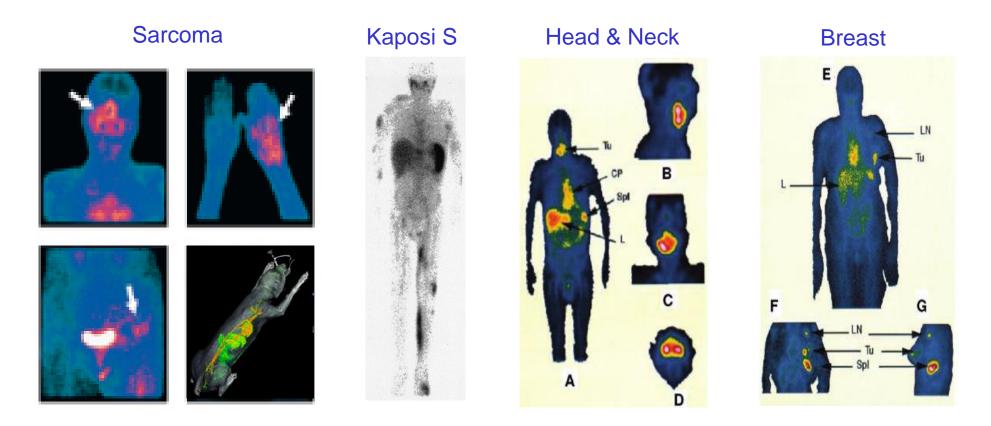

© 2004 GSM

Reg: KS, ovariumkanker, borstkanker, myeloma

### **EPR-mediated tumor targeting**



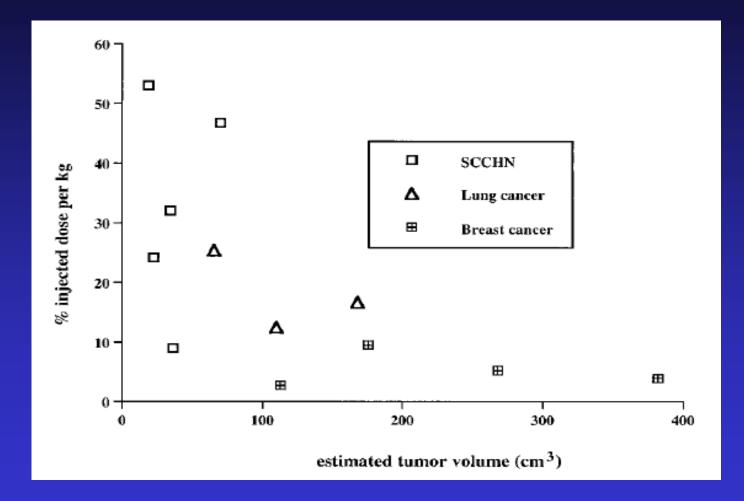
in Kaposi sarcoma: improved efficacy vs. ABV => 1 CR + 60/133 PR vs. 31/125 PR


<u>reduced toxicity</u> => less cardiomyopathy, nausea, alopecia (!)

Gabizon et al, Cancer Res (1994)

Harrington et al, Clin Cancer Res (2001)

# **EPR is highly variable**


=> in animal models and patients=> within a single patient and tumor



Koukourakis et al, Acta Oncol (2000)

Harrington et al, Clin Cancer Res (2001) Hansen et al, ACS Nano (2015)

## passive drug targeting to tumors via EPR



# Not only liposomes..

CRLX101 nanoparticles localize in human tumors and not in adjacent, nonneoplastic tissue after intravenous dosing.

Bioactivity in tumors is demonstrated (down-regulation of topoisomerase I and carbonic anhydrase IX).

Andrew J. Clarka, Devin T. Wileya, Jonathan E. Zuckerman, Paul Webster, Joseph Chao, James Li, Yun Yen, and Mark E. Davis

3850-3854 | **PNAS** | April 5, 2016 | vol. 113 | no. 14

EPR exists but is highly variable

imaging EPR to pre-select patients
 and increase response rate
 (personalized nanomedicine)

⇒Companion Diagnostics (CT/MRI/PET nanoprobes highly needed) Patient selection stepKey to improve targeted NM performance in the clinic

- Routinely done in case of molecularly targeted therapeutics
- E.g. Herceptin:
  - Biopsy-based preselection
  - Immunohistochemical staining (HER2)
  - Breast cancer patients: response 10-15% without, >50% with preselection

EPR imaging in breast cancer patients EPR variable; Patient stratification possible; Higher PET/CT signal corresponds with more favorable treatment outcome..

Author Manuscript Published OnlineFirst on March 15, 2017; DOI: 10.1158/1078-0432.CCR-16-3193 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited.

#### <sup>64</sup>Cu-MM-302 Positron Emission Tomography Quantifies Variability of Enhanced Permeability and Retention of Nanoparticles in Relation to Treatment Response in Patients with Metastatic Breast Cancer

Authors: Helen Lee<sup>1\*</sup>, Anthony F. Shields<sup>2</sup>, Barry A. Siegel<sup>3</sup>, Kathy Miller<sup>4</sup>, Ian Krop<sup>5</sup>, Cynthia Ma<sup>3</sup>, Patricia M. LoRusso<sup>6</sup>, Pamela Munster<sup>7</sup>, Karen Campbell<sup>1</sup>, Daniel F. Gaddy<sup>1</sup>, Shannon C. Leonard<sup>1</sup>, Elena Geretti<sup>1†</sup>, Stephanie Blocker<sup>2</sup>, Dmitri Kirpotin<sup>1</sup>, Victor Moyo<sup>1†</sup>, Thomas Wickham<sup>1†</sup>, Bart S. Hendriks<sup>1</sup>

## EPR imaging in pancreas tumor patients Tumor MRI signal and liposomal drug activity correlate!

Author Manuscript Published OnlineFirst on February 3, 2017; DOI: 10.1158/1078-0432.CCR-16-1990 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited.

Correlation Between Ferumoxytol Uptake in Tumor Lesions by MRI and Response to

Nanoliposomal Irinotecan in Patients With Advanced Solid Tumors: A Pilot Study

Authors

Ramesh K. Ramanathan<sup>1,2</sup>\*, Ronald L. Korn<sup>1,3</sup>\*, Natarajan Raghunand<sup>4</sup>, Jasgit C. Sachdev<sup>1</sup>, Ronald G. Newbold<sup>1,3</sup>, Gayle Jameson<sup>1</sup>, Gerald J. Fetterly<sup>5</sup>\*, Joshua Prey<sup>5</sup>, Stephan G. Klinz<sup>6</sup>, Jaeyeon Kim<sup>6</sup>, Jason Cain<sup>6</sup>\*, Bart S. Hendriks<sup>6</sup>, Daryl C. Drummond<sup>6</sup>, Eliel Bayever<sup>6</sup>\*, Jonathan B. Fitzgerald<sup>6</sup> Patient selection by noninvasive imaging Key to improve NM performance in the clinic

• Now

**Tumor accumulation** 

• Soon

Tumor vasculature characteristics & Pharmacological/Physical modulation

### **ARTICLE IN PRESS**

ADR-13146; No of Pages 17

Advanced Drug Delivery Reviews xxx (2017) xxx-xxx



Contents lists available at ScienceDirect

Advanced Drug Delivery Reviews

journal homepage: www.elsevier.com/locate/addr

#### Pharmacological and physical vessel modulation strategies to improve EPR-mediated drug targeting to tumors

Tarun Ojha<sup>a,b</sup>, Vertika Pathak<sup>a</sup>, Yang Shi<sup>a</sup>, Wim E. Hennink<sup>b</sup>, Chrit T.W. Moonen<sup>c</sup>, Gert Storm<sup>b,d</sup>, Fabian Kiessling<sup>a,\*</sup>, Twan Lammers<sup>a,b,d,\*</sup>

<sup>a</sup> Department of Nanomedicines and Theranostics, Institute for Experimental Molecular Imaging (ExMI), RWIH Aachen University Clinic, 52074 Aachen, Germany

<sup>b</sup> Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, 3584 CG, Utrecht, The Netherlands

<sup>c</sup> Imaging division, University Medical Center Utrecht (UMCU), Utrecht, The Netherlands

<sup>d</sup> Department of Targeted Therapeutics, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, 7500 AE Enschede, The Netherlands

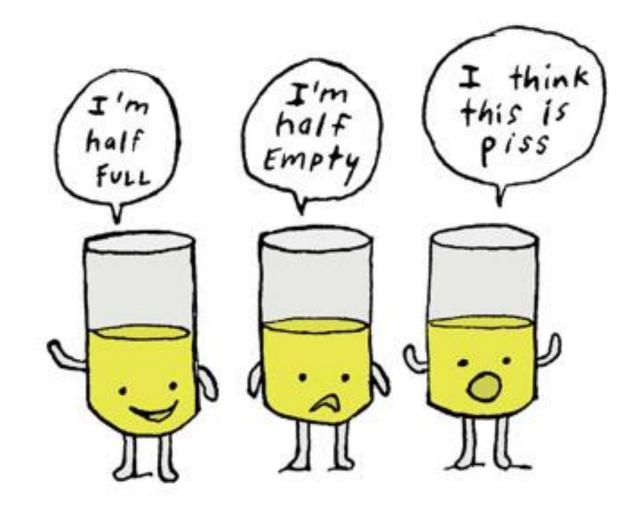
Perspective/Meta-analysis: NP Delivery to Tumours Wilhelm et al, Nat Rev Mat 1, 16014, 2016

Main conclusions

1. No significant clinical translation of cancer nanomedicines

Quickly rebutted: >500 clinical trials, with about 25% in Phase III (*Clinicaltrials.gov, search on August 5 2016: nanoparticle OR liposome OR micelle*) Perspective/Meta-analysis: NP Delivery to Tumours Wilhelm et al, Nat Rev Mat 1, 16014, 2016

Main conclusions


2. A 30-year strategy needed to overcome this problem

# Nanoparticles and Drug Targeting: Future

- To improve clinical translation and patient benefit, we should not be slow but stably build on what we know.
- But realise: drug development is costly and has its own slow pace.
- We have made progress and learned a lot.
- Biology is complex: better understanding of in vivo behavior essential
- From formulation-driven to disease-driven development: `collaborative work attitude' & `keep it simple' essential

# *"Friends are readily disappointed by the size of my closet. And I thought it was big!"*

# Should we be disappointed?



### Pace of clinical translation is indeed slow

Factors: very costly, attitude (big) pharma and investors, complexity (patho)biology underestimated, poor predictive models

#### We should not be SLOW but stably build on what we know:

- clinical imaging: to assess EPR (companion diagnostics) and tumor vasculature characteristics (density and permeability)
- enhance EPR via pharmacological and physical vessel modulation strategies
- exploit combination treatment regimens (e.g. Vyxeos (liposomal cytarabine/daunorubicin 5/1) and Onivyde (liposomal irinotecan), hyperthermia, radio-, immunotherapy)
- triggered release approaches
- not only cancer but also other diseases
- not only 'old' but also 'new' drugs (incl. biopharmaceuticals)
- targeted delivery of hydrophobic drugs
- animal models with better predictability (e.g. spontaneous and metastatic tumors, also in companion animals, PDX and GEMMs)
- emphasis should not on novel nanomaterials/nanoparticles, but base strategy on existing (patho)biological understanding and use clinically acceptable systems

ILLUSTRATION BY AMY HOJNACKI