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Before going into details I

- Expecting a mixed audience:
my slides varies from naive to rather complex

- Apologies for the others
- No just biosimilar issues, more general multiple

endpoint equivalence. Even looking over the edge
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State of the art in bioequivalence I

- Claiming bioequivalence for a single, selected PK
endpoint.
Commonly AUC within [0.8, 1.25]

- Claiming equivalence for two PK measures, commonly
AUC and Cmax independently, each at level α

- Challenge today: simultaneous claim

- Commonly COD. In pre-clinical in-vivo studies
commonly parallel group design (my background) ⇒
today
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State of the art in bioequivalence II

- Recent example: Pharmacokinetics..... equivalence trial of the
biosimilar MYL-1401H vs. reference pegfilgrastim [40]

- i 2 primary endpoints: each independent at level α
ii 3 formulations, i.e. multiple comparisons: without any

adjustment

4 / 77



State of the art in bioequivalence III
iii Large ni , narrow CI. No a-priori power information (ni ⇑ ⇔ CI ⇓)

Let us discuss RCT without a-priori power consideration now
iv Variance homogeneity? (almost balanced design)
vi CVAUC << CVCmax without any consequences
* Remember a different story in equivalence testing: 30 day toxicity

in-vivo assay with up to 100 endpoints (on different scales).
1 Actually, a multivariate equivalence test should be used.
2 But one takes per-endpoint PoH, each independent at α level
3 Since the CVs are naturally very different, very different f- rates result,

which are of primary interest (Be safe in negative results).
4 Creepy, but recent guidelines, publications and big companies do so.

Even creepier

vii Classification between primary (for claim) and secondary
endpoints (just to report) is missing

viii Tmax without estimates and CI
ix ....
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Multiplicity issues I
- At least three sources of multiplicity

i q primary endpoints. Correlated endpoints (otherwise stop here
with Bonferroni)

ii k formulations, i.e at the most k(k − 1)/2 all pairs comparisons
(or user-defined less). Correlated treatment comparisons
(otherwise stop here with Bonferroni)

iii lower AND upper test in each TOST, ie joint testing
* Notice, joint correlations between treatment comparisons,

endpoints and two-one-sided tests should be taken into account,
at least partly
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Multiplicity issues II
- Consequences of multiplicity adjustment

i We pay inherently a price when taking multiplicity into account,
i.e. confidence interval becomes conservative.
I.e. from the point of view of a poor industrial statistician, I
would only do a multiplicity adjustment when the authorities
require it.
Although, of course, the claim will be better (see below the
wording of WHO guideline)

ii General strategy. Controlling FWER, but one tries to limit
conservativeness by

1 minimum number of tests (e.g. a-priori or importance order)
2 consideration the correlation
3 choosing most appropriate test statistics (confidence interval estimates)

iii This usually becomes complicated and requires numerous
assumptions which are either not verifiable or not given in real
(small ni ) data
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Multiplicity issues III

iv On the other hand, Bonferroni works always and a simple, but
unnecessarily conservative

v Notice, NHST and sCI not always compatible. Prefer sCI!
vi However, looking to current phase III efficacy RCT: the majority

use a single primary endpoint, although a claim on multiple
endpoints would be needed (or relevant). It would be more
obvious to use a multivariate test for 2 primary efficacy
endpoints than two PK parameters for biosimilars. First, the big
ones should do their homework
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Properties of motivating examples I
- Example 1: Two formulations of ticlopidine in COD [26]

* 3 highly correlated PK measures
ρAUC ,AUCinf = 0.97; ρAUC ,Cmax = 0.81

* Assuming log-normal distribution for all 3 measures
* Here CVAUC ≈ CVCmax

* Disadvantage of p-value as criterion obvious: pAUC = pAUCinf but
R = 0.923 would make me nervous

* Details in Phillip’s talk
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Properties of motivating examples II
- Example 2: Biosimilar RCT [28] PK and efficacy of innovator

infliximab (INX) and biosimilar CT-P13 in patients with active
ankylosing spondylitis.

* Ratios of
AUC [94%; 116%)]
Cmax [95%; 109%)]
ASAS20-criterion: pCTP13 = 70.5%, pINX = 72.4% (no CI!)

* Conclusions: PK profiles of CT-P13 and INX equivalent as well as
efficacy (ASAS20) comparable. Independent, each at level α

* No raw data, no correlation, nor really multiple endpoint equivalence-
but appropriate biosimilar example

* In fact, even multiple efficacy endpoints and safety endpoints. How
unlikely is that ALL are equivalent? (later discussion)

* Different-scaled endpoints: continuous, log-normal and proportion(s)!
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Properties of motivating examples III
- Example 3: Nutritional assessment of GMO vs. isogenic varieties [13]
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Properties of motivating examples IV

* Assuming the same normal distribution for all endpoints?
* Here, it is obviously unrealistic to demand equivalence for all

endpoints simultaneously
* For all endpoints the same thresholds [1/δ, δ]. Really?
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Facts on bioequivalence I

- Bioequivalence definition, e.g. WHO

...two pharmaceutical products are bioequivalent if ...their
bioavailabilities, in terms of rate (Cmax and tmax) and extent of
absorption (area under the curve) ... are similar to such a degree that
their effects can be expected to be essentially the same

(WHO Technical Report Series No. 996, 2016, Annex 9)
- Already:

1 3 primary endpoints
2 degree of similarity not formal defined (no explicit choice of δ)
3 one could already understand the and as simultaneous

- Endpoint- and/or condition-depending choice of δ:
1 WHO: [0.8, 1.25] for AUC and Cmax
2 High variable drugs: Cmax [0.698, 1.43.2] for
3 FDA: Tmax should be similar (no formal δ at all)
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Facts on bioequivalence II

- δ definition implies µT/µR as effect size

Issue I: Different-scaled endpoints on the same multiplicative
effect size- really comparable?

- TOST, ie. 90% two-sided CI within [lower, upper], ie interval
inclusion criterion

Issue II: Claiming equivalence depends both on estimates (data,
statistics) and choice of δ. Notice, a general principle, only in
case of superiority test one cheats through with δ = 0. Was and
is a devastating concept, still common used
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Facts on bioequivalence III
- TOST is IUT, i.e. HA : H1 AND H2

Notice, the opposite is the common-used UIT (OR...OR...OR).
See slides below

- Majority assumes AUC is log-normal distributed ⇒ CI(t-test) for
yij = log(AUCij)

- Alternatives exists, e.g. ratio-to-control CI assuming normal
distribution (allowing variance heterogeneity) [1] or any
distribution (rank statistics)

- Claiming equivalence for multiple correlated endpoints is
challenging. The pros and cons of multivariate tests and
intersection-union tests are discussed. Sometimes bioassays with
multiple biosimilars with respect to a single comparator are
considered. The pros and cons of multiplicity adjustment will be
discussed.
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Questions so far?
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Design Issues I

- May be many endpoints, even up to p > n problem (GMO risk
assessment) ⇒ bivariate today only

- May be k-sample design ⇒ 2-sample design today only
- May be complex layouts (COD) ⇒ simple randomized design

today only
- May be adaptive [23] . Not adaptive today only
- I.e. the following approach is without limitation of generalizability
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Multiple endpoints issues I

- My selection criteria:
i sCI instead of tests
ii per-endpoint sCI connected with specific per-endpoint

thresholds (even to be more conservative)
iii taking the correlation between endpoints into account
iv not only global claim, but also subset claims (eg. similar for

AUC, but not for Cmax (at the lower limit only)). Ie. more
directional (due to importance) as noninferiority claim

v not assuming Gaussian distribution with homogeneous
variances,

vi not only considering location effects
vii not believing [0.8, 1.25] is valid for all endpoints
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Multiple endpoints issues II
- Wording multiple endpoint vs. multivariate:

i) the second implies multivariate normal distribution and a global
test,
ii) the first implies any-distributed yij as well as global and
endpoint-wise decisions ⇐ today
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Multiple endpoints issues III
- Strategy:

i all endpoints equivalent (just one global IUT) or
ii at least k of p equivalent [32] (using Bonferroni for the subsets) or
iii at least one, any-one, up to all (UIT(IUT)) complete power approach

[11]

- Relevant published tests
1 Most advanced approach: [26]

i) realistic: smallish sample sizes, unknown and potentially
heterogeneous variances, and highly correlated PK measures (0.973
AUC,AUC; 0.808 AUC,Cmax),
ii) assuming multivariate normal,
iii) simult CI for each endpoint,
iv) recommend treating it as joint confidence regions for the joint
parameter vector with respect to predefined margins [−∆,∆] rather
than marginal simultaneous CIs for individual... and there is no inherent
need to derive univariate intervals I disagree
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Multiple endpoints issues IV
v) projection into rectangular regions make it conservative, but keep it
interpretable (oh yes!),
vi) all-or-nothing criterion contradiction to sCI

1a IUT is an extreme conservative approach by function iutsize

2 A PK parameter AND a efficacy parameter (adaptive
seamless design for establishing PK and efficacy equivalence
in biosimilars) [36]
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Multiple endpoints issues V
3 Ratio and difference of two AUCs in 2-sample design

allowing variance heterogeneity assuming normal distribution
[15]; Already in [12]

4 Power for TOST with correlated endpoints [30]. Pioneering
paper, was later ignored.

5 Equivalence for functional data (lung volume test).
Frequentist Bonferroni pointwise (1− 2α) nonparametric
bootstrap [10]

6 Equivalence for high-dimensional expression data: F- or
range test using standardized squared Euclidean distance,
(implicitly assuming multivar normal homo vars) a single
moment-based difference ratio (DR) criterion of 1.25 [43].
Direct comparisons only, simplified to randomized parallel
group design (no interim analysis, no adaption)

7 Recent: [16] [18]
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Multiple endpoints issues VI
8 [41] multivar test may be powerful, but for each endpoint

within L; U needed
9 More: [26], [25], [3], [5], [6], [7], [8]

10 Which effect size?
11 Further more: [11], [? ], [13], [17], [24], [32], [35], [37], [39]
12 Recent permutation approach [2]
13 Really FDR [38]?
14 Meta analysis on multiple references (proportion) [42]
15 2 AUC with log and t [15]
16 New [3] and [30] and [42] and [2]
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Multiple endpoints issues VII

i Should we ignore σ? i) Certainly not, use studentization. ii) Should
we use σ directly e.g µR−µT

σ ? iii) should be test µR
µT

and σ2
R
σ2

T
e.g. by

IUT?, iv) are the first 2 moments sufficient, yes if normal distribution,
otherwise...., iv) consider any .. mlt

ii Population bioequivalence in the univariate case is a comparison of
two distributions that simultaneously compares means and variances

iii margins symmetric, or?
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Coffee break about here
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Sorry, I must first torture you with multiplicity
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Some background about multiplicity I
- The ultimate goal: control FWER
- What is a family? Some people believe in all-pair comparisons

when considering k treatments. Eg., for a design
[P,D1,D2,D3,C ]

- I like claimwise error rate [29]. Possible claims:
1 Trial sensitivity µC > µP?
2 Superiority which µDi > µP
3 At least noninferiority µDi is at least noninferior to µC
* But not all-pairs comparisons

- For biosimilars with 2 primary endpoints and 3 formulations (see
the example above): how to define claimwise error rate?

- Most textbook ugly: only treatment comparisons, only UIT
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Some background about multiplicity II

- I) Much more sources of multiplicity:
i endpoints
ii time points
iii subgroups
iv adaptive designs
v test principles (eg with or without considering baseline covariate

adjustment)
vi multiple tuning parameters (eg. poly-k adjustment in

carcinogenicity bioassays)
... etc.

- Goal: joint considering all sources of multiplicity and using the
entire correlation matrix, see treatment-by-time eg. Phillip’s PhD
thesis on www.biostat.uni-hannover.de or the paper [27]
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Some background about multiplicity III

- II) UIT ⇒ max-t-test: T max = max(t1, t2, ..., tφ)
- Hypothesis H0 = ⋂φ

i=1 H0i
Simple reject whether H1

0 OR H2
0 ,OR,....,Hφ

0 at least one,
anyone

- Eg. Dunnett-type comparison [0, i ] rejection when
Ti = |X̄i−X̄0|−δ

σ̂

√
1
ni

+ 1
n0

> tφ,ν,R,1−α

with the lower (1− α) quantile tφ,ν,R,1−α of an underlying
φ-variate t-distribution with correlation matrix R

- R can be simple (Dunnett) or complex (see below)
- First, it is an univariate test (univariate skewed t-distributed, see

M Hasler PhD thesis on www.biostat.uni-hannover.de)
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Some background about multiplicity IV

- Because Gabriel’s theorem (monotonicity of quantiles in φ) can
the elementary hypotheses rejected- not only a global. I.e. sCI are
available:
(X̄i − X̄0 ± tφ,ν,R,1−α S

√
1
ni

+ 1
n0

)
And adjusted p-value; in relevant cases compatible (eg. but not
for stepwise procedures)

- Estimating tφ,ν,R,1−α with known, a-priori calculated, R
library(multcomp) or estimated from data(model) mmm(),
allows correlated models, ie. lmm

- Basic property: tφ,ν,R,1−α ⇒ tν,1−α/φ when R⇒ 0
and tφ,ν,R,1−α ⇒ tν,1−α when R⇒ 1

- Everything we do in UIT-research
1 Reducing dimension φ, e.g. stepup, stepdown, a-priori importance,

claimwise formulation,...
2 Using R > 0
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Some background about multiplicity V
- An example for correlated models using mmm:

Dose-response with two primary endpoints: weight (normal) and
malformations (proportion)

Litter Dose Weight Malformation
1 60 0 0.90 0
2 60 0 0.83 0
3 60 0 0.95 0
4 60 0 0.95 0
5 60 0 1.07 0
6 60 0 1.06 0
.. ... ... ... ...

1017 156 3000 0.81 1
1018 156 3000 1.00 0
1019 156 3000 0.88 0
1020 156 3000 0.79 0
1021 156 3000 0.90 0
1022 156 3000 0.86 0
1023 156 3000 0.86 0
1024 156 3000 0.80 0
1025 156 3000 0.84 0
1026 156 3000 0.87 0
1027 156 3000 0.72 0
1028 156 3000 0.83 0

Doses: 0,750,1500,3000
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Some background about multiplicity VI
data("wuleon", package="SiTuR")
library("multcomp"); library(tukeytrend)
Wul <- dosescalett(wuleon, dose="Dose", scaling=c("ari", "ord", "arilog"))$data
wN <-lm(Weight˜Doseari, data=Wul)
wO <-lm(Weight˜Doseord, data=Wul)
wLL <-lm(Weight˜Dosearilog, data=Wul)
pN <-glm(Malformation˜Doseari, family=binomial(),data=Wul)
pO <-glm(Malformation˜Doseord, family=binomial(),data=Wul)
pLL <-glm(Malformation˜Dosearilog, family=binomial(),data=Wul)
wuWeMa <- glht(mmm(covarWe=wN, ordinWe=wO, linlogWe=wLL,

covarMa=pN, ordinMa=pO, linlogMa=pLL),
mlf(covarWe="Doseari=0", ordinWe="Doseord=0", linlogWe="Dosearilog=0",
covarMa="Doseari=0", ordinMa="Doseord=0", linlogMa="Dosearilog=0"))

Model Test stats p-value
1 covarWe: Doseari -28.6898 0.0000
2 ordinWe: Doseord -30.6301 0.0000
3 linlogWe: Dosearilog -30.6301 0.0000
4 covarMa: Doseari 14.6421 0.0000
5 ordinMa: Doseord 14.2400 0.0000
6 linlogMa: Dosearilog 14.2400 0.0000
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Some background about multiplicity VII

- III) IUT: ⇒ min-t-test: T min = min(t1, t2, ..., tφ)
(Notice, min-p-test is similar to maxT test!)

- Hypothesis H0 = ⋃φ
i=1 H0i

Simple reject whether H1
0 AND H2

0 ,AND,....,Hφ
0 for all

- Reject t1 < tν,1−α
⋂ t2 < tν,1−α...

⋂
...

- Bioequivalence TOST=2-sample-IUT
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Some background about multiplicity VIII

- IV) Comparing UIT and IUT
i Both become conservative with ⇑ φ:

i) UIT in terms of tν,1−α/φ,
ii) IUT in terms of t1 < tν,1−α

⋂
t2 < tν,1−α...

⋂
... even more

clearly (see below)
ii UIT allows information on all elementary tests by adj.p-values or

sCI, but IUT allows only ONE global outcome. Serious limitation
of IUT- remember multiple endpoint equivalence: either ALL
endpoints are equivalent or...

iii Compromise approach:all-pairs power UIT. Used for multiple
endpoint noninferiority test [11]. In the sense of the Lui 2011
approach [20]- never referenced
Common UIT is any-pairs power assumption: at least one H i

1,
anyone. Here: all H i

1
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Some background about multiplicity IX
An rather recent example (not yet published)

1 The US-FDA 2001 guidance recommended the evaluation of
individual tumors in long-term carcinogenicity bioassays by a
trend test or pairwise comparison of high dose with control

2 Alternative decision rule for a strict monotone dose-response
relationship, a trend test and pairwise test simultaneously
was proposed recently [19] (joint test)

3 This logical AND operation represents an IUT. The
elementary tests within an IUT are performed at level α to
control FWER.

4 Simulation normal distributed homoscedastic errors in a
balanced k = 3 + 1, ni = 20 design

5 Tests used: i) LinReg ... linear regression alone, ii) UIT...lin
regression OR HvsC contrast (UIT), iii) IUT... lin regression
AND HvsC contrast (IUT)
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Some background about multiplicity X
Shape n LinReg UIT IUT

H0 20 0.049 0.049 0.027
lin 20 0.946 0.941 0.893

0,0,0,d 20 0.894 0.920 0.849
0,0,d,d 20 0.988 0.984 0.910
0,d,d,d 20 0.906 0.926 0.859

0,0,d,2/3d 20 0.219 0.171 0.035
0,0,1/3d 20 0.000 0.000 0.000

0,0,d,4/5d 20 0.808 0.752 0.446
0,d,d,4/5d 20 0.386 0.412 0.280

6 UIT is less conservative (not surprising, since he uses the
correlation); both are tests for monotonic trends; UIT allows
trend AND CvsH claim (adj p-value, sCI) IUT only ONE.

iv Valid only for these two scenario ([11]), but can be used as
an idea

v Notice IUT, taking correlation into account is needed ... (I
failed)
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Some background about multiplicity XI
Summary of multiplicity issue

1 The actual test IUT(IUT(IUT))) is terribly conservative,
especially because we cannot use the correlations, and it only
allows a global statement (claim)

2 In biosimilar trials for multiple endpoints and multiple treatments
I propose UIT(UIT(IUT))):
I) UIT() for correlated multiple endpoints,
II) UIT(UIT()) for multiple treatment comparisons (within
multiple endpoints),
III) IUT ... TOST for equivalence

3 Can be analysed by function mmm (within library(multcomp))
for (1− 2α) CIs (equi-TOST)

4 Allows all-hypotheses claim or any subset claim, while controlling
FWER. Following perfectly the claimwise error rate concept

5 More work needed next
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Questions so far?
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Going on with provocations
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A most extreme pseudo-multiple endpoints approach I
- Sometimes I look at data from the perspective of an empirical

analyst quite naively: there is an univariate endpoint,
repeatedly measured on the same subject, several subjects
within each factor level.

- What am I doing? t-test-type intervals in the mixed model, with
log(endpoint) to get into the multiplicative model.

- That’s it. No kinetics assumptions, no multiple pseudo-endpoints
- Easily for variance heterogeneity (Satterthwhaite)
- Available for normal distribution (library(mratios)) and relative

effect size (as ratio, but not yet in the mixed effect model) as well
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A most extreme pseudo-multiple endpoints approach II
- Toy example: Hand and Crowder,Table A.14: blood glucose levels

measured at 14 time points over 5 hours for 7 volunteers who took
alcohol, where the same was repeated on a second date with the same
subjects but with a dietary additive

Subject Date Time glucose
2 1 1 0 3.0
3 1 1 2 4.7
4 1 1 4 6.0
5 1 1 6 6.3
6 1 1 8 4.3
7 1 1 10 3.0
8 1 1 12 2.0
9 1 1 15 4.5

10 1 1 18 3.8
11 1 1 21 3.2
12 1 1 24 2.6
13 1 1 27 2.6
14 1 1 30 2.6
16 2 1 0 3.6
17 2 1 2 6.0
18 2 1 4 8.6
19 2 1 6 8.8
20 2 1 8 7.2

192 7 2 18 3.7
193 7 2 21 3.4
194 7 2 24 3.6
195 7 2 27 3.6
196 7 2 30 3.6
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A most extreme pseudo-multiple endpoints approach III
- Naive mixed effect model (in COD or ... may be much more

complex). Sorry, using Dunnett-type approach (here 2 sample
t-test) because biosimilar assays compare commonly > 2
formulations
Gluc$lc<-log(Gluc$glucose+0.001)
library("lme4")
modM1 <-lmer(lc˜group+Time +(Time|Subject), data=Gluc)
library("multcomp")
mix<-exp(confint(glht(modM1, linfct=mcp(group="Dunnett")),level=0.90)$confint)

- Comparing the 90% confidence intervals:
Approach Ratio lwr upr
Just repeated measures 1.02 0.96 1.07
AUC 1.03 0.95 1.12
Cmax 1.01 0.84 1.28

- Regulators will not be amused, I will always do this only for myself
personally confidential in the future
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Prediction intervals for future obs- a different story for a
different problem? I

- In biosimilar testing not only subject-specific measures, such as AUC
ar eof interest, also batch-specific quality parameters, e.g. purity

- Here prediction interval for a single, k of n or all future
observations can be used. The reference products are used as
historical data, the biosimilar as new. The rule is: calculate
[lower ; upper ] from historical data and check whether the individual
new data are within the claim similarity

- Commonly, replicates are measure for each batch, ie a random effect
model should be used
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Prediction intervals for future obs- a different story for a
different problem? II

- A faked application: historical micronuclei counts: Runs within 25
historical assays(transformed into pseudo normal). Question: are all
counts in the new assay with this prediction interval?
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Prediction intervals for future obs- a different story for a
different problem? III

- R code
library("mixADA")
library("lme4")
fiNC <-lmer(ftt ˜ 1 + (1|run), data=HistNC)
fs <-mixADA:::predint_lmer(fit=fiNC, type="h1", level=0.95,

alternative="less")$predint

- The upper prediction limit in the random effects model is 3.36, ie if
no MN in the new assay (any dose!) is < 3.36 this assay can be
claimed as safe...

- But we know intervals are extreme sensitive to distribution
misclassification

- Any multivariate extension was not found in the literature
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Enough confusion: now comes a new approach
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A proposal I
Principles:

1 Each primary endpoint can follow its own specific distribution,
including skewed... censored

2 Primary endpoints can be even differently scaled ⇒ find a
comparable transformation

3 Use the same comparable effect size: odds ratio and its
confidence interval for all primary endpoints. Another kind of
ratio.

4 The cut-off from continuous to dichotomous should be
’optimal’, specific for each primary endpoint

5 Leaving the nice ratio µT/µR with its (0.8, 1.25) thresholds into
OR with (?, ?) thresholds
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A proposal II

6 Do not only consider location effects only. Take location, scale,
shape in a joint approach into account

7 Using simultaneous confidence intervals from an UIT(IUT)-test
for multiple endpoints and multiple formulation in a complete
power approach style

8 Take some correlations in the UIT(IUT) into account
9 Provide R-code
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A proposal III

- Issue I): Using the most appropriate transformation function for
each endpoint: most likely transformation approach [14]

- Both in univariate and multivariate analysis it is rather unrealistic
to assume the same distribution for each of the many endpoint.
The concept of most likely transformation (mlt) provides a
comparable analysis of such quite different-scaled endpoints.

- The usual regression models estimate the conditional mean as a
function of the covariate(s), assuming the higher moments can
be ignored. Alternatively, mlt provides semiparametric regression
models allows transformation functions to depend on the
covariate for kernel-based non-parametric approaches or
parametric generalized additive models for location, scale and
shape.
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A proposal IV
- The estimated conditional distribution functions are consistent which

allows a comparable analysis.
- Robust against any non-normal distributions (including discreteness),

variance heterogeneity, extreme values, and (left)-censored
observations

- By means of the CRAN package mlt this is quite simple for a selected
endpoint y (within the data set dat and a grouped covariate A):
library(mlt)
yvar <- numeric_var("y", support = quantile(dat$y, prob = c(.1, .9)))
yb <- Bernstein_basis(yvar, ui = "increasing", order = 5)
mod <- ctm(yb, shifting = ˜ X, todistr = "Normal", data = dat)
fmod <- mlt(mod, data = cc)

- The object fmod contains the parameter estimates of the most likely
regression model for a single slope

- Depending an the scale of the endpoint, both the support region and the
degree of Bernstein polynomial (order=5) are not too critical for the
robustness of this approach.
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Using odds ratio as effect size I

- Issue II: Using odds ratio as effect size
Odds ratio in epidemiology widely used

I Recently, the continuous outcome logistic regression was proposed [22]
with estimating a continuous covariate distribution independent of both
the endpoints scale and certain cut-offs for categorization and providing
an odds-ratio and its confidence interval for the association between
the continues covariate X and the arbitrarily distributed endpoint y.

I A tiny change in the above R-code todistr = "Logistic" allows the
odds-ratio estimation (or more comfortable the CRAN package
library(tram) can be used)

COLRmod <- ctm(yb, shifting = ˜ X, todistr = "Logistic", data = dat)

- Effect size is a ratio: comparable over multiple, different-scaled
endpoints

- OR depends on an optimal cut-point (optimal in different senses:
continuous ⇒ dichotomous; location,scale,shape
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Using odds ratio as effect size II
- The post-hoc categorization of the continuous covariate and its

qualitative analysis is widely used, e.g. the use of four dietary
reference quartiles [9]- despite all warnings [33, 4].

- It makes it possible to consider the association between a continuous
covariate and an arbitrarily distributed endpoint, independently of the
endpoints scale and of certain cut-offs for categorization of the
covariate.

- It provides effect sizes, in terms of odds ratios with confidence
intervals

- The dimensionless odds ratio is comparable over different-scaled
analytes (endpoints)

- These odds ratios can be evaluated for all potential values or cut-off
of the covariate function, which allows the associations for different
categorization types.
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Continuous outcome logistic regression (COLR) I

- Why not simply Y = α + βX?
1 linear relationship are rare in biosciences (remember Health=f(wine))
2 ε = N(0, σ2) unlikely, particularly for multiple endpoints
3 Xi (i > 10, cor(Xi ) > ...) (today limited to naive X )

- Interesting in exposure epidemiology: categorization up to now,
although many concerns published. Why they do this?

- Continuous outcome logistic regression (COLR) for the
estimation of a continuous Y distribution. Parameters of interest,
such as odds ratios for specific categories (or hazard ratios), can
be extracted from this model post-hoc in a general way.

- Core idea of COLR: to model the entire conditional distribution
of Y for all reasonable values b simultaneously
logit(P(endpoint ≤ φ|covariate)) = r(φ|covariate)
This requires that the parameterization of the regression function
is a smooth and monotonically increasing function of cut-off φ.
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Continuous outcome logistic regression (COLR) II
- The odds ratio can be evaluated for all potential Y values φ > 0,

which allows the associations for different categorization schemes
to be interpreted post hoc. The regression coefficients β are
log-odds ratios of all possible events Y ≤ φ

- Advantage of COLR: the possibility of evaluating the likelihood
of Y values obtained at different measurement scales or using
different categorization schemes

- We can decide whether an association is + or - by the sign of the
regression coefficients β. But the nice interpretation: one-unit
increase in covariate corresponds to an increase of the conditional
mean of Y is not more possible

- We can interpret as log-OR, simultaneously for all possible binary
logistic regression models

- Strong relationship between quantile regression models and
transformation models.
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Continuous outcome logistic regression (COLR) III
- Continuous data are also ordinal, and ordinal regression models

can be fit to continuous outcomes
- Belong to class of cumulative probability models (CPMs). [21]
- Attractive features:

1 Ordinal regression models are robust because they only incorporate the
order information of response variables and are therefore invariant to
any monotonic transformation of outcomes. This is particularly useful
when the distributions of continuous responses are skewed

2 CPMs directly model the conditional cumulative distribution function,
from which other components of the conditional distribution (eg, mean
and quantiles) can be easily derived, whereas other regression models
often only focus on one aspect mean only

3 CPMs can handle any orderable response, including those with mixed
types of continuous and discrete ordinal distributions. eg.detection
limits, eg. measurements censored at an assay detection limit resulting
in a mixture of an undetectable category and detectable quantities
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Continuous outcome logistic regression (COLR) IV
- The CRAN package library(tram) or rms, ordinal can be used

to estimate such an odds ratio and its confidence interval
- A toy example: Kletten-Labkraut (Galium aparine) were treated

with increasing concentration of a herbicide (data in library(drc))

library(tram)
myC<-Colr(dry ˜ dose, data = mydat)
CI<-exp(confint(myC)); OR<-exp(coef(myC))

- The odds ratio is 1.0039 with [1.0028; 1.0050] (notice the huge
concentrations)
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Coffee break about here
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Issue III: A maximum test for multiple correlated endpoints
I

I Various multivariate methods exist for a multiple endpoint vector Yijk
with i = 1, ..., I correlated endpoints

I We prefer those based on well-understood univariate test statistics
taking the correlation between the endpoints into account e.g. by
means of a maximum contrast test [11].

I Whereas the correlation between these iξ linear models is estimated by
the multiple marginal model approach [31]

I This union-intersection test is conservative (with a higher dimension I
and less correlation), but offers not only a global statement like the
IUT, but also for each individual test/confidence interval

I Again, the R-code is not complicated for two correlated endpoints
y1,y2 and their mlt-transformed models mod2, mod2:

library(multcomp)
summary(glht(mmm(ari=mod1, ari2=mod2), mlf(ari="X=0", ari2="X=0")))
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Issue III: A maximum test for multiple correlated endpoints
II

- The outcomes of this proposal are for each endpoint an OR and its
simultaneous (UIT) confidence interval, allowing a global equivalence
claim (all sCI are within lower , upper) or any patterns of elementary
claim. Hereby is the scale comparable, but more complex

Odds ratio lwr upr
AUC 1.88 0.18 19.24

Tmax 0.09 0.00 2.34

- For these faked (tiny ni ) data not surprising
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Issue III: A maximum test for multiple correlated endpoints
III
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Issue IV: Multiple formulations I
- Remember the 1st example

- Design: Biosimilar, EU-Reference, US-Reference quite common
- Claim? All similar?, at least against one reference?....
- I.e. either IUT(all) ⇒ the same above shown UIT-complete

power approach or UIT(IUT)(at least 1 equivalent)
- I favor the UIT-complete power approach, alone from the

perspective of individual claims, e.g. µB/µEU : [0.91, 1.12] but
µB/µUS : [0.97, 1.26] but IUT would say: NO
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Issue IV: Multiple formulations II
- On the other hand UIT(IUT) for comparison against control

available (Bofinger, 1992). Quite complex due to curious
correlation matrix

- A more general approach in library(ETC) (Hasler 2009)
available
library(ETC)
data(BW)
comp <- etc.rat(formula=Weight˜Dose, data=BW, margin.up=1.25, method="var.equal")
summary(comp)

Alternative hypotheses: ratios to control within
the margins 0.8 0.8 0.8 and 1.25 1.25 1.25
Method: var.equal

estimate statistic lower upper p.value
2/1 0.9636 -9.248 0.9226 1.006 1.077e-12
3/1 0.9494 -8.448 0.9087 1.000 2.138e-11
4/1 0.8936 -5.291 0.8540 1.000 3.139e-06

Could be extended to multiple correlated endpoints
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Questions so far?
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Using the max(max)(mlt) approach for faked ticlopidine
data I

- Ticlopidine trial is a COD. Faked data as pseudo parallel group
design (Remember: mixed effect model for mlt not yet available)

- Raw data quite naive with small sample sizes (see the wide CI)
Dose Cmax Auc AucI

1 0 784.3 2021.7 2131.4
2 0 304.2 901.7 1107.9
3 0 307.3 741.4 806.2
4 0 156.7 475.6 509.9
5 0 745.6 2521.4 2784.0
6 0 295.1 1029.3 1391.2
7 0 89.6 232.4 248.1
8 0 321.1 629.6 672.4
9 0 310.8 1035.5 1105.8

10 0 475.4 1193.5 1321.8
... ... ... ... ...
37 1 166.8 260.9 280.2
38 1 455.0 932.0 960.9
39 1 406.5 1141.0 1208.3
40 1 240.9 681.0 715.8
41 1 378.8 812.4 910.6
42 1 278.4 756.7 801.8
43 1 209.6 539.0 577.5
44 1 212.4 606.2 662.9
45 1 162.1 359.2 414.0
46 1 212.1 518.0 572.0
47 1 394.2 1013.4 1101.4
48 1 567.0 1373.8 1433.7
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Using the max(max)(mlt) approach for faked ticlopidine
data II

- Distribution? Variance homogeneity? (remember
log-transformation assumes (among others) homogeneous
variances [34]

- Assuming any distribution. Modeling location, scale, shape
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Using the max(max)(mlt) approach for faked ticlopidine
data III

- mlt per endpoint. Estimation generalized log-OR, each

library(mlt)
vAUC <- numeric_var("Auc", support = quantile(Mydat$Auc, prob = c(.1, .9)), bound = c(0, Inf))
vCmax <- numeric_var("Cmax", support = quantile(Mydat$Cmax, prob = c(.1, .9)))
vAUCI <- numeric_var("AucI", support = quantile(Mydat$AucI, prob = c(.1, .9)))

### Flexible baseline transformation functions
bAUC <- Bernstein_basis(vAUC, order = 5, ui = "increasing")
bCmax <- Bernstein_basis(vCmax, order = 5, ui = "increasing")
bAUCI <- Bernstein_basis(vAUCI, order = 5, ui = "increasing")

### P(AUC <= y | grp) = expit(h(y) + beta * grp2)
### => beta is y-independ log-OR for grp1
mauc <- ctm(bAUC, shifting = ˜ Dose, todistr = "Logistic", data = Mydat)
mcmax <- ctm(bCmax, shifting = ˜ Dose, todistr = "Logistic", data = Mydat)
mauci <- ctm(bAUCI, shifting = ˜ Dose, todistr = "Logistic", data = Mydat)

auc5 <- mlt(mauc, data=Mydat)
cmax5 <- mlt(mcmax, data=Mydat)
auci5 <- mlt(mauci, data=Mydat)
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Using the max(max)(mlt) approach for faked ticlopidine
data IV

- Three independent simultaneous tests on slopes using mmm. Notice,
extension to multiple formulations possible here (Here mmm used for
univariate test!)
library(multcomp)

BB1 <- glht(mmm(au=auc5), mlf(au="Dose=0"))
BB2 <- glht(mmm(cma=cmax5), mlf(cma="Dose=0"))
BB3 <- glht(mmm(aui=auci5), mlf(aui="Dose=0"))

- Max-test on 3 correlated endpoints using mmm to estimate 3 log-OR
and its 90% 2-sided simultaneous confidence limits
BBB <- glht(mmm(au=auc5, cma=cmax5, aui=auci5),

mlf(au="Dose=0", cma="Dose=0", aui="Dose=0"))
bbb<-exp(confint(BBB)$confint)

- We could estimate adjusted p-values
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Using the max(max)(mlt) approach for faked ticlopidine
data V

Simultaneous Tests for General Linear Hypotheses
Linear Hypotheses:

Estimate Std. Error z value Pr(>|z|)
au: Dose == 0 -0.048224 0.502967 -0.096 0.992
cma: Dose == 0 -0.113613 0.502943 -0.226 0.941
aui: Dose == 0 -0.002994 0.502980 -0.006 1.000
(Adjusted p values reported -- single-step method)

- We should estimate OR and their 90% 2-sided simultaneous
confidence limits

Estimate lwr upr
au: Dose 0.9529200 0.3825822 2.373494
cma: Dose 0.8926030 0.3583815 2.223162
aui: Dose 0.9970109 0.4002751 2.483369
attr(,"conf.level")
[1] 0.9

- OR’s near to 1, but sCI wide. I.e. we have to thing about the
thresholds for this specific estimate
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Needed I

- Remember: claiming equivalence depends both on estimates: new
effect size and choice of δ ⇒ new threshold needed (eg. by
method comparison simulation)

- Extending to complex designs (eg. mixed effect model; not yet
available)

-
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Provocation about equivalence criteria I

- For me is the primary criterion the closeness of odds ratio (or
ratio of ...) to the value of 1. However, this criterion is missing
completely in the interval inclusion approach of TOST. And an
OR = 0.997 tells me a high degree of similarity....

- Choice of δ for TOST is rather complicated and this permanent
relapse to FDA 0.8, 1.25] makes me unhappy.

- δ is NOT a simple function of variance (precision), it depends
ALSO on the medical/biological meaning and it should be
symmetric ONLY in rather rare cases (because to have more or
less rate and extend of a biosimilar relative to the comparator has
NOT the same consequences

- Why the p-values for point − 0H0 0.992, 0.941 and 0.999 should
be completely ignored? (Yes, I know the difference between PoH
and PoS)
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Provocation about equivalence criteria II

- Multiple endpoints intensify this choice of δ problem. Looking on
the genetic modified varieties with > 100 endpoints: we will
never be able to defined fair δij

- My second counterargument against TOST interval approach
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Take home I

- With simultaneous tests for multiple endpoints in
biosimilars, we are not too late compared to RTC.

- There is enough time for controversies about different
approaches before a guidance is prepared.

- This talk was a contribution to the controversy, I
propose a, not the golden way, to Rome, via Aquincum

- Next, submitting a related paper
- Choice of δ in this odds ratio scale for multiple

endpoints with difference importance and scales
remains as an issue
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Take home II

- Data, δ, ni (Power), approach, objective (IUT, UIT)
determines biosimilar analysis with correlated (PK)
endpoints

- Counter argument: Don’t act like that and take
log-normal homoscedastic for granted: use multi var
test. Contact Thomas and Phillip and use
library(jorce)

- Finaly, sorry for too much questions and
contradictions. But a proposal exists- and you can
re-analysed easily your data with these CRAN
packages and make up your own mind

73 / 77



References I
[1] pairwiseCI: Confidence Intervals for Two Sample Comparisons, author = Frank Schaarschmidt and Daniel Gerhard, year =

2018, note = R package version 0.1-26, url = https://CRAN.R-project.org/package=pairwiseCI,.
[2] R. Arboretti, E. Carrozzo, F. Pesarin, and L. Salmaso. Testing for equivalence: An intersection-union permutation solution.

Statistics in Biopharmaceutical Research, 10(2):130–138, 2018.
[3] H. Y. Barnett, H. Geys, T. Jacobs, and T. Jaki. Comparing sampling methods for pharmacokinetic studies using model

averaged derived parameters. Statistics in Medicine, 36(27):4301–4315, November 2017.
[4] J. L. Barnwell-Menard, Q. Li, and A. A. Cohen. Effects of categorization method, regression type, and variable distribution

on the inflation of type-i error rate when categorizing a confounding variable. Statistics in Medicine, 34(6):936–949, March
2015.

[5] R. L. Berger and J. C. Hsu. Bioequivalence trials, intersection-union tests and equivalence confidence sets. Statistical
Science, 11(4):283–302, November 1996.

[6] L. D. Brown, J. T. G. Hwang, and A. Munk. An unbiased test for the bioequivalence problem. Annals of Statistics,
25(6):2345–2367, December 1997.

[7] Y. Cao, D. Obeng, G. D. Hui, L. T. Xue, Y. K. Ren, X. J. Yu, F. Wang, and C. Atwell. Evaluating manufacturing process
profile comparability with multivariate equivalence testing: Case study of cell-culture small scale model transfer.
Biotechnology Progress, 34(1):187–195, January 2018.

[8] L. P. Du and L. Choi. Likelihood approach for evaluating bioequivalence of highly variable drugs. Pharmaceutical
Statistics, 14(2):82–94, March 2015.

[9] R. Eriksen, R. Gibson, K. Lamb, Y. McMeel, A. C. Vergnaud, J. Spear, M. Aresu, Q. Chan, P. Elliott, and G. Frost.
Nutrient profiling and adherence to components of the uk national dietary guidelines association with metabolic risk
factors for cvd and diabetes: Airwave health monitoring study. British Journal of Nutrition, 119(6):695–705, March 2018.

[10] C. B. Fogarty and D. S. Small. Equivalence testing for functional data with an application to comparing pulmonary
function devices. Annals of Applied Statistics, 8(4):2002–2026, December 2014.

[11] M. Hasler and L. A. Hothorn. Simultaneous confidence intervals on multivariate non-inferiority. Statistics in Medicine,
32(10):1720–1729, May 2013.

[12] D. Hauschke, M. Kieser, and L. A. Hothorn. Proof of safety in toxicology based on the ratio of two means for normally
distributed data. Biometrical Journal, 41(3):295–304, 1999.

74 / 77



References II
[13] L. A. Hothorn and R. Oberdoerfer. Statistical analysis used in the nutritional assessment of novel food using the proof of

safety. Regulatory Toxicology and Pharmacology, 44(2):125–135, March 2006.
[14] T. Hothorn, L. Most, and P. Buhlmann. Most likely transformations. Scandinavian Journal of Statistics, 45(1):110–134,

March 2018.
[15] S. Y. Hua, D. L. Hawkins, and J. H. Zhou. Statistical considerations in bioequivalence of two area under the

concentrationtime curves obtained from serial sampling data. Journal of Applied Statistics, 40(5):1140–1154, May 2013.
[16] S. Y. Hua, S. Y. Xu, and R. B. D’Agostino. Multiplicity adjustments in testing for bioequivalence. Statistics in Medicine,

34(2):215–231, January 2015.
[17] L. Kong, R. C. Kohberger, and G. G. Koch. Design of vaccine equivalence/non-inferiority trials with correlated multiple

binomial endpoints. Journal of Biopharmaceutical Statistics, 16(4):555–572, July 2006.
[18] B. Lang and F. Fleischer. Comments on ’multiplicity adjustments in testing for bioequivalence’. Statistics in Medicine,

35(14):2479–2480, June 2016.
[19] K. K. Lin and M. A. Rahman. Comparisons of false negative rates from a trend test alone and from a trend test jointly with

a control-high groups pairwise test in the determination of the carcinogenicity of new drugs. J. Biopharm Statist, 2018.
[20] F. Liu. Some correlations in intersection-union tests and their relationship with complete power. Statistics & Probability

Letters, 81(4):518–523, April 2011.
[21] Q. Liu, B. E. Shepherd, C. Li, and F. E. Harrell. Modeling continuous response variables using ordinal regression.

Statistics in Medicine, 36(27):4316–4335, November 2017.
[22] T Lohse, S Rohrmann, D Faeh, and T Hothorn. Continuous outcome logistic regression for analyzing body mass index

distributions. F1000Research, 2017, 6:1933 (doi: 10.12688/f1000research.12934.1).
[23] W. Maurer, B. Jones, and Y. Chen. Controlling the type i error rate in two-stage sequential adaptive designs when testing

for average bioequivalence. Statistics in Medicine, 37(10):1587–1607, May 2018.
[24] J. Mielke, B. Jones, B. Jilma, and F. Konig. Sample size for multiple hypothesis testing in biosimilar development.

Statistics in Biopharmaceutical Research, 10(1):39–49, 2018.
[25] A. Munk and R. Pfluger. 1-alpha equivariant confidence rules for convex alternatives are alpha/2-level tests - with

applications to the multivariate assessment of bioequivalence. Journal of the American Statistical Association,
94(448):1311–1319, December 1999.

75 / 77



References III
[26] P. Pallmann and T. Jaki. Simultaneous confidence regions for multivariate bioequivalence. Statistics in Medicine,

36(29):4585–4603, December 2017.
[27] P. Pallmann, M. Pretorius, and C. Ritz. Simultaneous comparisons of treatments at multiple time points: combined

marginal models versus joint modeling. Statistical Methods in Medical Research, accepted for publication., 2015.
[28] Won Park, Pawel Hrycaj, Slawomir Jeka, Volodymyr Kovalenko, Grygorii Lysenko, Pedro Miranda, Helena Mikazane,

Sergio Gutierrez-Urena, MieJin Lim, Yeon-Ah Lee, Sang Joon Lee, HoUng Kim, Dae Hyun Yoo, and Juergen Braun. A
randomised, double-blind, multicentre, parallel-group, prospective study comparing the pharmacokinetics, safety, and
efficacy of ct-p13 and innovator infliximab in patients with ankylosing spondylitis: the planetas study. Annals of the
Rheumatic Diseases, 72(10):1605–1612, October 2013.

[29] A. Phillips, C. Fletcher, G. Atkinson, E. Channon, A. Douiri, T. Jaki, J. Maca, D. Morgan, J. H. Roger, and P. Terrill.
Multiplicity: discussion points from the statisticians in the pharmaceutical industry multiplicity expert group.
Pharmaceutical Statistics, 12(5):255–259, September 2013.

[30] K. F. Phillips. Power for testing multiple instances of the two one-sided tests procedure. International Journal of
Biostatistics, 5(1):15, 2009.

[31] Christian Bressen Pipper, Christian Ritz, and Hans Bisgaard. A versatile method for confirmatory evaluation of the effects
of a covariate in multiple models. Journal of the Royal Statistical Society Series C-applied Statistics, 61:315–326, 2012.

[32] H. Quan, J. Bolognese, and W. Y. Yuan. Assessment of equivalence on multiple endpoints. Statistics in Medicine,
20(21):3159–3173, November 2001.

[33] P. Royston, D. G. Altman, and W. Sauerbrei. Dichotomizing continuous predictors in multiple regression: a bad idea.
Statistics in Medicine, 25(1):127–141, January 2006.

[34] F. Schaarschmidt. Simultaneous confidence intervals for multiple comparisons among expected values of log-normal
variables. Computational Statistics and Data Analysis, 58:265–275, FEB 2013.

[35] S. Y. Tian, H. H. Chang, D. Orange, J. K. Gu, and M. Suarez-Farinas. A bioequivalence test by the direct comparison of
concentration-versus-time curves using local polynomial smoothers. Computational and Mathematical Methods in
Medicine, page 4680642, 2016.

[36] R. Uozumi and C. Hamada. Adaptive seamless design for establishing pharmacokinetic and efficacy equivalence in
developing biosimilars. Therapeutic Innovation & Regulatory Science, 51(6):761–769, November 2017.

76 / 77



References IV

[37] C. I. Vahl and Q. Kang. Equivalence criteria for the safety evaluation of a genetically modified crop: a statistical
perspective. Journal of Agricultural Science, 154(3):383–406, April 2016.

[38] H. van der Voet. Safety assessments and multiplicity adjustment: Comments on a recent paper. Journal of Agricultural
and Food Chemistry, 66(9):2194–2195, March 2018.

[39] H. van der Voet, P. W. Goedhart, and K. Schmidt. Equivalence testing using existing reference data: An example with
genetically modified and conventional crops in animal feeding studies. Food and Chemical Toxicology, 109:472–485,
November 2017.

[40] C. F. Waller, R. G. Tiessen, T. E. Lawrence, A. Shaw, M. S. Liu, R. Sharma, M. Baczkowski, M. A. Kothekar, C. E.
Micales, A. Barve, G. M. Ranganna, and E. J. Pennella. A pharmacokinetics and pharmacodynamics equivalence trial of
the proposed pegfilgrastim biosimilar, myl-1401h, versus reference pegfilgrastim. Journal of Cancer Research and Clinical
Oncology, 144(6):1087–1095, June 2018.

[41] W. Z. Wang, J. T. G. Hwang, and A. Dasgupta. Statistical tests for multivariate bioequivalence. Biometrika,
86(2):395–402, June 1999.

[42] R. E. Weiss, X. M. Xia, N. Zhang, H. Wang, and E. Chi. Bayesian methods for analysis of biosimilar phase iii trials.
Statistics in Medicine, 37(20):2938–2953, September 2018.

[43] C. Yang, A. A. Bartolucci, and X. Q. Cui. Multigroup equivalence analysis for high-dimensional expression data. Cancer
Informatics, 14:253–263, 2015.

77 / 77


	Continuous outcome logistic regression (COLR)
	References

