BIOEQUIVALENCE OF HIGHLY VARIABLE DRUG PRODUCTS – AN UPDATE

<u>László Endrenyi</u> and <u>László Tóthfalusi</u> University of Toronto, Canada and Semmelweis University, Hungary

> 3rd Biosimilars Forum October 25-27, 2018 Budapest, Hungary

BIOEQUIVALENCE FOR HIGHLY VARIABLE DRUG PRODUCTS

OUTLINE

- Average and scaled average bioequivalence (ABE, SABE and RSABE)
- The problem of bioequivalence for highly variable drugs
- Properties of RSABE
- Regulatory requirements in various jurisdictions, and their problems

USUAL REGULATORY CRITERION

$1/BEL \leq GMR \leq BEL$

BEL: BE limit - Usually 1.25 GMR: Ratio of geometric means

Expectation: The 90% confidence limits for GMR should be between 0.80 and 1.25

- $lgBEL \le log(GMR) \le lgBEL$ - $lgBEL \le m_T - m_R \le lgBEL$

lgBEL: Logarithm of BEL m_T, m_R: Estimated logarithmic means

REFERENCE SCALED AVERAGE BE (RSABE)

Difference between estimated logarithmic means is normalized by <u>estimated</u> variation:

- $lgBEL_s \le (m_T - m_R)/s_{WR} \le lgBEL_s$

s_{WR} is the within-subject variation of the reference product BEL (and IgBEL): BE limit set by regulatory authorities

R. Schall, BioInternational 2, 91-106 (1995)
L.Tothfalusi et al., Pharm.Res. 18: 728-733 (2001)
L. Tothfalusi and L. Endrenyi, Pharm.Res. 20: 382-389 (2003)

IS THERE A PROBLEM WITH BE FOR HVD/P? SIMILAR PRODUCTS "NOT BIOEQUIVALENT"

- A: 2 products distinct But small variation: "Bioequivalent"
- B: 2 products very similar But large variation: "Not bioequivalent"

L. Tothfalusi, L. Endrenyi, H.G. Arieta, Clin. Pharmacokin. 21: 725-743 (2009)

THE PROBLEM OF HIGHLY-VARIABLE DRUGS AND DRUG PRODUCTS

<u>Criterion:</u> The confidence limits for GMR should be between 0.80 and 1.25

Problem:

With large variation (wide confidence limits): *it is very difficult to satisfy the regulatory criterion,* unless the number of subjects (N) is very large

Problem especially with C_{max} which often has higher variation than AUC

Definition:

Highly-variable drug: Coefficient of variation CV > 30%

DEALING WITH HIGH VARIATION: REFERENCE-SCALED AVERAGE BE (RSABE)

Difference between logarithmic means is normalized by <u>estimated</u> variation

- $lgBEL_{s} \le (m_{T} - m_{R})/s_{WR} \le lgBEL_{s}$

Advantages:

- Statistical power is independent of variation
- *Statistical power is, with same sample size, much higher than of unscaled average BE*
- Interpretation: Compare expected change due to switching with expected difference between replicate administrations
- Interpretation: Standardized effect size, as in clinical comparisons

DEMONSTRATION OF QUANTITATIVE PROPERTIES (SIMULATIONS)

Simulate 10,000 BE studies under each condition

Determine, at each condition, the proportion (in %) of studies in which BE is accepted: Acceptance%

Assume:

First, true bioequivalence: GMR = 1.0 [GMR = Ratio of geometric means] Then, gradually deviate from true BE, increase GMR in steps

Plot power curve: Acceptance% <u>vs</u>. GMR

Properties:

*<u>Consumer risk</u>: Probability of <u>accepting</u> BE even when the two products are not equivalent

- Low level controlled by regulatory agencies

<u>Producer risk</u>: Probability of <u>rejecting</u> BE when the two products <u>are</u> equivalent (i.e. when GMR = 1.0)

CHARACTERISTICS OF

SCALED (& UNSCALED) AVERAGE BE

N = 48, 2 PERIODS

Unscaled average BE yields low acceptance of BE at high variations

Scaled average BE does not yield low acceptance at high variations

Scaled average BE Large, robust producer risk

L. Endrenyi, L. Tothfalusi. Clin. Res. Regul. Affairs, 25: 93-117 (2008) S.H. Haidar et al. AAPS J. 10: 450-454 (2008)

REFERENCE SCALED AVERAGE BE WITH EXPANDING LIMITS (ABEL)

Confidence interval of log(GMR) is proportional to estimated variation:

A.W. Boddy et al. Pharm. Res. 12: 1865-1868 (1995)

- $lgBEL_{S}^{*}s_{WR} \leq m_{T} - m_{R} \leq lgBEL_{S}^{*}s_{WR}$

(Proportionality factor: lgBEL_s= 1.0 suggested)

Advantages:

- *Can apply the usual two one-sided t-tests procedure* (However, see below)
- Statistical power is independent of sample size
- Statistical power is, with same sample size, much higher than of unscaled average BE

Comments:

- The estimated limits are random variables (lgBEL_s*s_w)
- Therefore, application of the two one-sided tests procedure is not correct (However, approximately correct with reasonably large N)

EUROPEAN PROCEDURE (EMA)

Guideline on Bioequivalence (2010):

```
- Average BE with Expanding limits (ABEL)

lgBEL = ln(1.25)/\sigma_{W0} = 0.76

\sigma_{W0} = 0.294 (regulatory constant)

CV_{W0} = 30\%
```

- Mixed procedure: ABE if s_{WR} ≤ 0.294

SABE if s_{WR} > 0.294

- Constraint: Only up to <u>CV = 50%</u> Beyond 50%: BE limits 70% to 143%
- Constraint on point estimate of <u>GMR</u>: Between 80% and 125%
- Only C_{max}
- Replicate design, 3 or 4 periods

CONSTRAINT ON GMR

Point estimate of GMR (and not confidence interval criterion) dominates at high variation

Joint criterion:

Always lower than either of the component criteria

At low variation: <u>similar to Scaled ABE</u> Confidence interval criterion At high variation: <u>similar to Point estimate</u> Joint criterion similar to Point estimate criterion

L. Endrenyi, L. Tothfalusi, J. Pharm. Pharmaceut. Sci. 12: 138-149 (2009)

CONSTRAINT ON GMR

Larger deviation between the (logarithmic) means arises as a <u>natural, direct</u> <u>consequence</u> of the higher variability

Larger deviations occur at higher variations

They would be <u>truncated</u> by GMR constraint

Confidence interval of log(GMR), assuming normal distribution, would not be correct

Proposals of GMR constraints with levelling-off properties:

- V. Karalis et al., Pharm. Res. 21: 1933-1942 (2004)
- V. Karalis et al., Eur. J. Pharm. Sci. 26: 34-61 (2005)
- J. Kytariolos et al., Pharm. Res. 23: 2657-2664 (2006)

CONSTRAINT ON GMR

L.Z. Benet, AAPS Workshop on Individual BE, 1999:

Concern about possibly large deviations between estimated logarithmic means [i.e., about log(GMR)]

Concern about interpretation to physicians & patients

L.Z. Benet, FDA Committee on Pharmaceutical Sciences, 2006:

- "1. There is no scientific basis or rationale for the point estimate recommendations.
 - 2. There is no belief that addition of the point estimate criteria will improve the safety of approved generic drugs.
 - 3. The point estimate recommendations are only "political" to give greater assurance to clinicians and patients who are not familiar (don't understand) the statistics of highly variable drugs."

UPPER CONSTRAINT ON USING SABE/ABEL

No scientific rationale for the constraint!

Recommend: None

TYPE I ERROR – CONSUMER RISK

Type I error <u>reaches 8 %</u> (rather than 5%) at CV = 30% (a) Can be <u>controlled</u> by iteratively adjusting α (b)

D. Labes, H. Schütz, Pharm. Res. 33(11) 2805-2814 (2016)

TYPE I ERROR – CONSUMER RISK

Type I error of 7-8% around CV = 30% has been of much concern recently.

Remedies have been suggested.

D. Labes, H. Schütz, Pharm. Res. (2016) Iterative adjustment of α
M. Wonnemann, et al. Pharm. Res. 21: 135-143 (2015) Two-stage design
L. Tothfalusi, L. Endrenyi, AAPS J. 18: 376-489 (2016) Corrective algorithms
L. Tothfalusi, L. Endrenyi, Stat. Med. 36: 4378-4390 (2017) Corrective algorithms

Also:

- D. Labes, Bioeq. Bioavail. Forum (2013)
- L. Endrenyi, L. Tothfalusi, J. Pharm. Pharmaceut. Sci. 12: 138-149 (2009)
- J. Munoz, et al. Stat. Med. 35: 1933-1943 (2016)

TYPE I ERROR – CONSUMER RISKBACKGROUND: MIXED MODEL OF BE

Unscaled average BE if $s_{WR} \leq s_{HV}$,

Scaled average BE if $s_{WR} > s_{HV}$ (s_{HV} : Limiting variation =0.294; $CV_{HV} = 30\%$)

The probability of making an incorrect choice is highest around 30%

FDA PROCEDURE

S.H. Haidar et al. (FDA) Pharm. Res. 25: 237-241 (2008) B.M. Davit et al. (FDA) AAPS J. 14: 915-924 (2012)

Reference-scaled average BE (RSABE)

HV drugs: Reference within-subject variation: CV > 30%

 $lgBEL = ln(1.25)/\sigma_{W0} = \underline{0.89}$ $\sigma_{W0} = \underline{0.246}$ (regulatory constant) $CV_{W0} = \underline{25\%}$

- Mixed procedure: ABE if s_{WR} ≤ 0.294 RSABE if s_{WR} > 0.294
- <u>Constraint</u> on point estimate of <u>GMR</u>: Between 80% and 125%
- Both AUC and C_{max}
- 3-period, reference-replicated design (at least) TRR, RTR, RRT
- 4-period, fully replicated design RTRT, TRTR

FDA PROCEDURE - BACKGROUND

Implied BE limits on μ T- μ R [= In(GMR)] using the mixed scaling procedure

The probability of making an incorrect choice is highest around 25%

The true, population variation σ_{WR} is considered.

B.M. Davit, D.P. Conner, In "BE Requirements in Various Global Jurisdictions" (I. Kanfer, ed.) 269-305, 2017.

IMPLIED TYPE I ERROR FOR THE FDA PROCEDURE

TIE: Type I Error

Largest TIE: 0.068 at CV = 0.25

Of concern to FDA/OGD

Similar to that of ABEL at CV = 0.30

H. Schütz, Bioeq. Bioavail. Forum Also: D. Schuirmann, T. Hyslop, FDA

EMA AND FDA REGULATORY CONSTANTS

Mixed model of BE

- A: Regulatory constant $CV_0 = 30\% EMA$
- **B:** Regulatory constant $CV_0 = 25\% FDA$

Regulatory limits:

- Continuous with CV₀ = 30%
- Discontinuous with CV₀ = 25%

The estimated s_w (or CV_w) is considered.

FDA REGULATORY CONSTANT

LARGE TYPE I ERROR – CONSUMER RISK

 $lgBEL = ln(1.25)/\sigma_{W0}$ $\sigma_{W0} = 0.25$ (FDA regulatory constant)

Regulatory constant is <u>different</u> from CV = 30% (defining HV drugs)

Consequence: discontinuity

		<u>Consumer risk (%)</u>	
Mixed strategy	Regulatory standardized var'n (%)	Unscaled ABE	Scaled ABE
No	30	4.95	5.56
No	25	4.98	<u>16.50</u>
Yes	30	5.01	6.98
Yes	25	4.94	<u>14.78</u>

Very large consumer risk is possible

FDA REGULATORY CONSTANT LARGE TYPE I ERROR – CONSUMER RISK n = 12 n = 36 FDA 🔶 FDA 0.15 Cont–FDA Cont–FDA Cont–FDA2 Cont–FDA2 Pr{declare BE} EMA - EMA 0.10 Howe-EMA Howe-EMA 0,05 00'0 $\mathrm{CV}_{\mathrm{WR}}$ CV_{WR}

Type I error – Consumer risk: <u>EMA: 7 - 8%</u> <u>FDA: 13 – 18%</u>

J. Munoz, et al. Stat. Med. 35: 1933-1943 (2016) Also:

D. Labes, Bioeq. Bioavail. Forum (2013)

L. Endrenyi, L. Tothfalusi. J. Pharm. Pharmaceut. Sci. 12: 138-149 (2009)

EMA AND FDA REGULATORY CONSTANTS

BACKGROUNF OF TYPE I ERROR

Mixed model of BE

- A: Regulatory constant $CV_{w0} = 30\% EMA$
- B: Regulatory constant $CV_{w0} = 25\% FDA$

The <u>estimated</u> s_w (or CV_w) is considered.

The probability of making an incorrect choice is highest around 30%

The probability is larger with the FDA than the EMA procedure

EMA & FDA REGULATORY CONSTANTS :

REGULATORY UNCERTAINTY

<u>σ₀ = 0.25</u>

- Discontinuity in acceptance Regulatory uncertainty
- Higher CV_w results in higher acceptance Anomalous

<u>σ₀ = 0.294</u>

- Continuity in acceptance No regulatory uncertainty

BIASES OF RSABE AND ITS IMPLEMENTATION - 1

The <u>estimated</u> RSABE has a positive bias

It can be <u>corrected</u> by exact algorithms using Hedges' procedure

L. Tothfalusi, L. Endrenyi, AAPS J. 18: 476-479 (2016) L. V. Hedges, J. Educ. Stat. 6: 107-128 (1981)

BIASES OF RSABE AND ITS IMPLEMENTATION - 2

The FDA approach for estimating RSABE has bias

- BE is rejected if estimates in the squared, linearized model are positive (larger than 0.00) - See below

Actual limits for rejecting BE:

	Sequences		
n	2	3	
24	0.0600	0.0619	
36	0.0442	0.0451	
48	0.0353	0.0358	
60	0.0295	0.0299	

T. Hyslop, et al. Stat. Med. 19: 2885-2897 (2000)
FDA draft guidance for BE of progesterone oral capsules (2011)
L. Tothfalusi, L. Endrenyi, AAPS J. 18: 476-479 (2016)

IMPLEMENTATION OF THE FDA APPROACH

Calculate upper 95% confidence limit: Square, linearize RSABE model:

 $(m_T - m_R)^2 - IgBEL_S^2 * s_{WR}^2 \le 0$

Use distributions of m_T , m_R , s_{WR}^2 to obtain confidence limit

Bioequivalence if the limit is not positive

Computer program (SAS) presented

FDA. Draft guidance for BE of progesterone oral capsules (2011)

Difficulties:

- The method has a bias (see earlier)
- Requires balanced data
- Computation is unstable with partial replicate design

FDA vs. EMA - COMMENTS

Implementation

FDA (SABE)

Linearize model, calculate upper confidence limit (see later)

Use computer program

Progesterone draft guidance (FDA, 2011) For studies with full design

EMA (ABEL)

Usual computational procedure for crossover studies

Simple!

Regulatory constant FDA: σ_{w0} = 0.25 Discontinuity

> EMA: σ_{w0} = 0.294 No discontinuity

EMA AND FDA REGULATORY CONSTANTS

Regulatory constant					
	<u>EMA</u>	<u>FDA</u>			
σ _{wo}	<u>0.294</u>	<u>0.246</u>			
CV _{w0}	<u>30%</u>	<u>25%</u>			
Switching var'n	Same	Different			
BE Limits	Continuous	Discontinuous			
Regul. uncertainty	High	Low			
Type I error (max)	7-8%	13-18%			
Recommend:	<u>σ_{wo} = 0.294</u> CV _{wo} = 30%				
	<u> </u>				

BE FOR HIGHLY VARIABLE DRUGS: <u>3 REGULATORY AUTHORITIES</u>

<u>EMA</u>	<u>FDA</u>	HEALTH CANADA
ABEL	RSABE	ABEL
C _{max} only	C _{max} & AUC	AUC only
$\sigma_{wo} = 0.294$	0.25	0.294

PARALLEL BUT SEPARATE CONSIDERATIONS

DIFFERING REGULATORY RULES!

HARMONIZATION WOULD BE DESIRABLE

STUDY DESIGNS

More information is obtained from more sophisticated designs

Hierarchy of designs:

- Full replicate (TRTR / RTRT or TRT / RTR)
- Partial replicate (TRR / RTR / RRT)
- Standard 2×2 crossover (RT / TR)
- Parallel (R / T)

STUDY DESIGNS

More information is obtained from more sophisticated designs

Variances which can be estimated:

- Parallel: Total variance (between + within)
- 2×2 crossover:

Between, "within" subjects

- Partial replicate:

Within subjects (Reference)

- Full replicate:

Within subjects (Reference & Test)

SCALED AVERAGE BE FOR PARALLEL DESIGN (?)

 $-IgBEL_{SP} \le (\mu_T - \mu_R)/\mathcal{O}_{Total} \le IgBEL_{SP}$

Total variation = Between-subject + Within-subject variations

 $\mathbf{O}_{\text{Total}}^2 = \mathbf{O}_{\text{B}}^2 + \mathbf{O}_{\text{W}}^2$ [Variance components]

<u>Regulatory question</u>: What should be the regulatory limit (BEL_{SP})??

It is related to the ratio $\sigma_{\rm B}^2/\sigma_{\rm W}^2$

Would a ratio = 1.0 be the best assumption?

SUMMARY

- 1. RSABE and ABEL have <u>largely remedied</u> the difficulties with highly variable drugs.
- 2. Regulatory agencies have followed <u>differing paths</u> towards resolving the problem.
- 3. <u>Constraints</u> are not based on science, have adverse consequences.
- 4. <u>Discontinuity</u> of regulatory requirements can have serious adverse consequences.
- 5. Magnitude of <u>Type I error</u> and its correction are important.
- 6. Attention should be paid to <u>biases of estimates</u>.
- 7. <u>Harmonization</u> of requirements and procedures would be desirable and important.

CITED REFERENCES

- A.W. Boddy et al. Pharm. Res. 12: 1865-1868 (1995)
- B.M. Davit et al. (FDA) AAPS J. 14: 915-924 (2012)
- B.M. Davit, D.P. Conner, In "BE Requirements in Various Global Jurisdictions" (I. Kanfer, ed.) 269-305, 2017.
- EMA. Guideline on bioequivalence. (2010)
- L. Endrenyi, L. Tothfalusi. Clin. Res. Regul. Affairs, 25: 93-117 (2008)
- L. Endrenyi, L. Tothfalusi, J. Pharm. Pharmaceut. Sci. 12: 138-149 (2009)
- FDA. Draft guidance for BE of progesterone oral capsules (2011)
- S.H. Haidar et al. Pharm. Res. 25: 237-241 (2008)
- S.H. Haidar et al. AAPS J. 10: 450-454 (2008)
- L. V. Hedges, J. Educ. Stat. 6: 107-128 (1981)
- T. Hyslop, et al. Stat. Med. 19: 2885-2897 (2000)
- V. Karalis et al., Pharm. Res. 21: 1933-1942 (2004)
- V. Karalis et al. Eur. J. Pharm. Sci. 26: 34-61 (2005)
- V. Karalis et al. Eur. J. Pharm. Sci. 38: 55-63 (2009)
- J. Kytariolos et al. Pharm. Res. 23: 2657-2664 (2006)
- D. Labes, Bioeq. Bioavail. Forum (2013)
- D. Labes, H. Schütz, Pharm. Res. (2016)
- J. Munoz et al. Stat. Med. 35: 1933-1943 (2016)
- R. Schall, BioInternational 2, 91-106 (1995)
- L.Tothfalusi et al., Pharm.Res. 18: 728-733 (2001)
- L. Tothfalusi, L. Endrenyi, Pharm.Res. 20: 382-389 (2003)
- L. Tothfalusi, L. Endrenyi, AAPS J. 18: 376-489 (2016) (2016)
- L. Tothfalusi, L. Endrenyi, Stat. Med. 36: 4378-4390 (2017)
- M. Wonnemann, et al. Pharm. Res. 21: 135-143 (2015)

THANK YOU!

I.endrenyi@utoronto.ca