

Achievements, Disappointments and Lessons Learned from Characterization of Nanotechnology-Formulated Complex Drugs Marina Dobrovolskaia, PhD, MBA, PMP Head, Immunology Section <u>marina@mail.nih.gov</u>

October 27, 2018

2 **Presentation Outline**

- **Global Landscape of Nanotechnology Drug Products**
- Achievements, Disappointments and Lessons Learned over past decade Case Studies Lessons Learned

ÓΗ Ó,

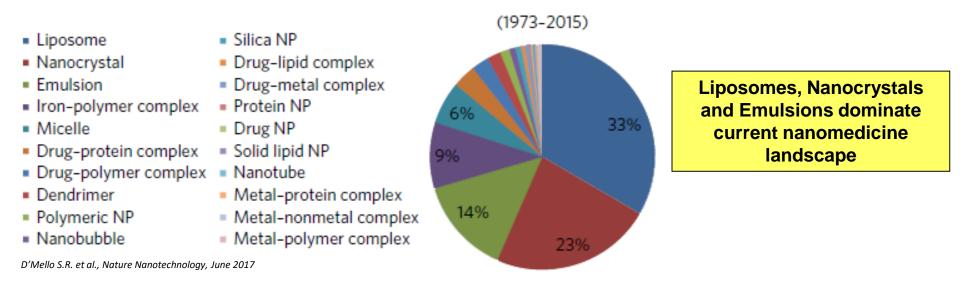
Small Molecules

- **Challenges in Preclinical Characterization**
 - **Considerations for Platforms**
 - **Considerations for APIs**
- **Conclusion and THM**
- Gaps and future directions

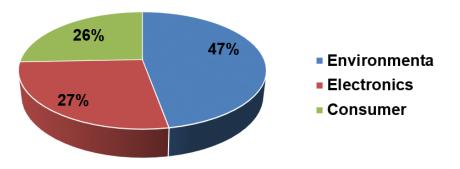
Nanotechnology

Platforms

Therapeutic Proteins and Antibodies

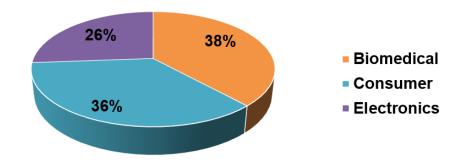

Therapeutic **Nucleic Acids**

NCI **Alliance** for


Nanotechnology

APIs delivered by Nanoplatforms

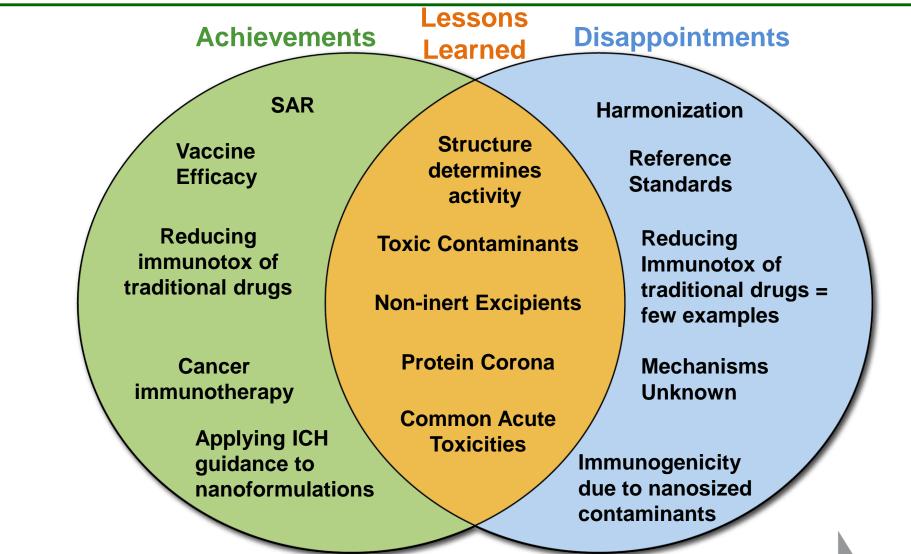
Evolving Landscape of Nanotechnology Products


Global Nanotechnology Market (2015)

These graphs are prepared based on the business analytical report by Cumming S., BCC Research (201

Global Nanotechnology Market in 2015 was dominated by environmental, electronic and consumer products

CAGR rates (2016-2021)


Biomedical Applications of Nanotechnology are predicted to have the highest 5-year compound annual growth rate by 2021

NCI Alliance for

Nanotechnology

Achievements, Disappointments and Lessons Learned

Decade of Nanoparticle Characterization

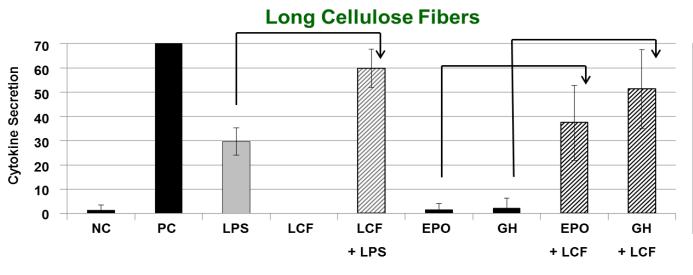
Achievements

Data from A.M.M. Eggermont, MD

Female, 80 years old, large melanoma: Amputation? Three months after TNF + melphalan ILP: > 98% tumor shrinkage, resection of residual tumor; no local recurrence

Contaminating particles induce protein aggregation

	Biologicals 38 (2010) 602-611
	Contents lists available at ScienceDirect
132	Biologicals
ELSEVIER	journal homepage: www.elsevier.com/locate/biologicals
Meeting report	
	port on protein particles and immunogenicity of therapeutic proteins: ne gaps in risk evaluation and mitigation
John Carpenter Thomas Nikola	r ^a , Barry Cherney ^b , Anthony Lubinecki ^c .*, Stacey Ma ^d , Ewa Marszal ^e , Anthony Mire-Sluis ^f , ai ^g , Jeanne Novak ^h , Jack Ragheb ^b , Jan Simak ^e
^a University of Colorado, ^b Division of Therapeutic	Boulder, CO, USA Proteins, Center for Drugs Evaluation and Research, Food and Drug Administration, Rockville, MD, USA


harmaceutical Development & Manufacturing Sciences, Johnson & Johnson Pharmaceutical R&D. Radnor, PA. USA

- Genentech, Inc, South San Francisco, CA, USA
- ^e Center for Biologics Evaluation and Research, Food and Drug Administration, Rockville, MD, USA Amgen Inc, Thousand Oaks, CA, USA
- ^g Abbott Laboratories, North Chicago, IL, USA ^h CBR International Corp, Denver, CO, USA

Immunogenicity of Recombinant Human Interferon Beta Interacting with Particles of Glass, Metal, and Polystyrene

MIRANDA M.C. VAN BEERS,^{1,2} FRANCESCA GILLI,³ HUUB SCHELLEKENS,² THEODORE W. RANDOLPH,⁴ WIM JISKOOT¹ Division of Drug Delivery Technology, Leiden/Amsterdam Center for Drug Research, Leiden University, Leiden, The Netherlands ²Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands ³Clinical Neurobiology Unit, Neuroscience Institute Cavalieri Ottolenghi, University Hospital San Luigi Gonzaga, Orbassano, Italy ⁴Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado

Contaminating particles may exaggerate inflammation by traces of endotoxin in proteins and/or particles.

While monitoring protein aggregation due to contaminating particulate materials is important, traces of endotoxin contamination should not be ignored

⁷Lessons Learned: Structure Activity Relationships

Activity

Cytokine induction and pyrogenicity, type I interferon induction, complement activation and CARPA, prolongation of plasma coagulation time

Hemolysis, platelet aggregation; blood coagulation; leukocyte PCA, DIC; exaggeration of endotoxin-mediated inflammation Endotoxin contamination, bacterial contamination, cytokine storm and other inflammatory reactions relevant to endotoxin and/or bacteria

Hemolysis

Prolongation of plasma coagulation time

CARPA

MPS uptake

Oxidative stress, cytokine induction (IL-8), MPS uptake

MPS uptake and other size-/charge-related toxicities

Cytokines (IL-1β), inflammasome activation, exaggeration of endotoxinmediated inflammation

NP or component(s) is cationic

Carries therapeutic nucleic acid as API

- 0

Particle size is above 300 nm; solid, non-deformable particles with size above 200 nm; charged particles

Based on PEGylated liposome

NP or component(s) is polyanionic

Contains surfactants

One or more components produced in *E.coli*

High aspect ratio, Si-, C-, Ti-containing particles

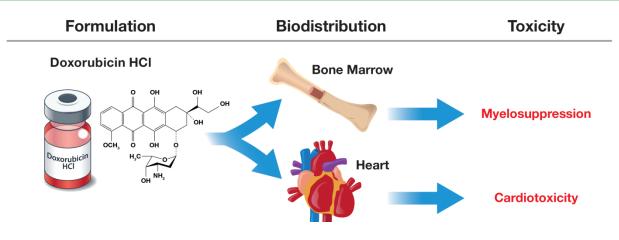
PEG is not covalently attached or otherwise unstable

Lipid-based formulation

Structure

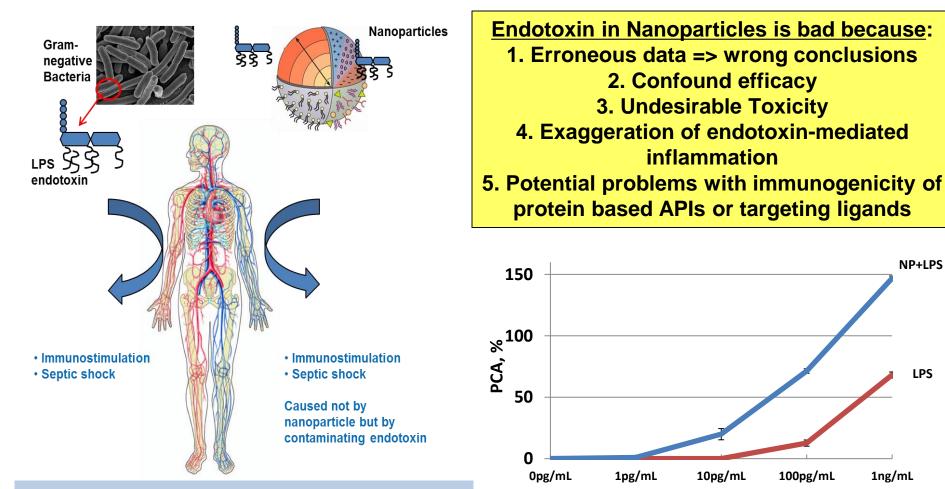
Dobrovolskaia MA., et al., Toxicol. Applied Pharmacol, 2016

Challenges in Preclinical Characterization



Preclinical characterization of nanomaterials has many assorted challenges in several areas: chemistry, toxicology, pharmacology, immunology, hematology and efficacy

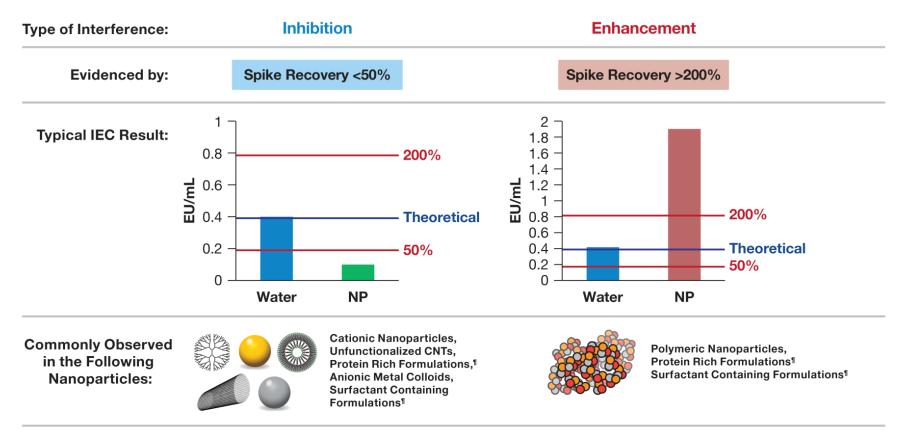
Change in biodistribution



Dobrovolskaia MA, 2017 Book Chapter in Pharmaceutical Nanotechnology: Innovation and Production, 2 Volumes

Altered distribution \rightarrow altered toxicity profile

Importance of endotoxin screening


- Endotoxin contamination is a common issue for engineered nanomaterials
- >30% preclinical nanoformulations fail due to endotoxin

Dobrovolskaia MA et al, Nanomedicine 2012

Concentration of LPS

Example: Cationic PAMAM dendrimers exaggerate endotoxin-mediated leukocyte procoagulant activity

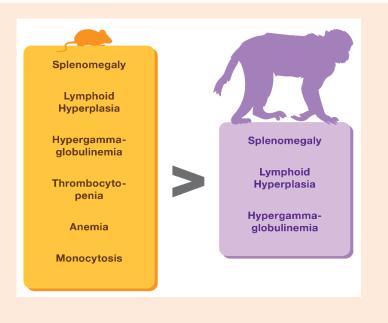
Dobrovolskaia MA, Journal of Controlled Release 220, 571-583

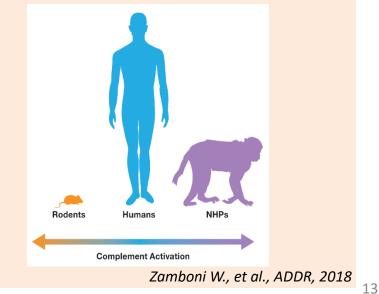
Nanomedicine Grand Challenge: Nanoparticles that interfere with one or more LAL formats.

Immune response related challenges with clinical translation of therapeutic nucleic acids

This section will focus on one class of drug products, i.e. TNA, to highlight the existing challenges with their translation from bench to bedside

Immunological Barriers Halting Translation of Traditional TNAs




Three Top Immune-Mediated Toxicities

- **Cytokine Storm**
- CARPA
- **Prolongation of Blood** ٠ **Coagulation Time**

Common Preclinical Challenges

- **Different sensitivity between** ٠ human and preclinical animal species
- **Delivery**

"Toll" of platform Selection

Receptor/protein	Species	Intracellular localization	Nucleic acid	Induces:
		localization		
TLR3	Human, Mouse	Endosome	dsRNA	Cytokines
71.0.7		Endolysosome		Type Linterferons
TLR7	Human	Endosome	ssRNA	Cytokines Type Linterferons
TLR8	Mouse	Endolysosome Endosome	ssRNA	Cytokines
TLNO	IVIOUSE	Endolysosome	35004	Type Linterferons
TLR9	Human, Mouse	Endosome	ssDNA	Cytokines
	finding fillouse	Endolysosome	Plasmid DNA	Type Linterferons
			Bacterial DNA	Type II interferons
			dsDNA/RNA hybrids	-)pe in menerologi
TLR13	Mouse	Endosome	Bacterial RNA	Cytokines
		Endolysosome	Ribozyme	Type Linterferons
RIG-1	Human, Mouse	Cytosol	Short dsRNA	Type Linterferons
LGP-2	Human, Mouse	Cytosol	Long dsRNA	Regulatory role in
			SSRNA	MDA-5-initiated signaling;
			ssDNA	Type Linterferons
MDA-5	Human, Mouse	Cytosol	Long dsRNA	Type Linterferons
			SSRNA	
			SSDNA	
MAVS (IPS-1,	Human, Mouse	Mitochondria	SSRNA	Cytokines
CARDIF, VISA)			ssDNA	Type Linterferons
PKR	Human, Mouse	Cytosol	dsRNA	Type Linterferons
OAS	Human, Mouse	Cytosol	dsRNA	Degradation of RNA and type I
				interferon induction through
				RIG-1
DNA-dependent	Human, Mouse	Cytosol	dsDNA	Conversion of DNA into 5'-
RNA polymerase III				triphosphate short dsRNA to
				initiate type I interferon
CTINC	Human Mouro	Endoplocesic	dsDNA	response through RIG-1
STING	Human, Mouse	Endoplasmic	dsDNA	Type I interferons
		reticulum Golgi		
cGAS	Human, Mouse		dsDNA	Type I interferons
DAI	Human, Mouse	C ytosol C ytosol	dsDNA	Type Linterferons
IFI16/p204	Human, Mouse	Cytosol	dsDNA	Type Linterferons
DDX41	Human, Mouse	Cytosol	dsDNA	Type I interferons
DNA-PK	Human, Mouse	Cytosol	dsDNA	Cytokines
DIWATEN	numan, wouse	C yrosoi	USDIA	Type I interferons
MRE11	Human, Mouse	Cytosol	dsDNA	Type Linterferons
AIM-2	Human, Mouse	Cytosol	dsDNA	IL-1, IL-18, IL-33, IL-36, IL-37,
70012	Human, Wouse	C yessol	USD IN A	IL-38

Battered and bruised, ProNAi Therapeutics drops PNT2258

completely ...no further investment in PNT2258 or the underlying DNAi platform by ProNAi is contemplated...

Dicerna Prioritizes Resources to Advance GalXC™ Product

...Clinical **Gandiplates** Discontinued for DCR-MYC in Oncology Indications...

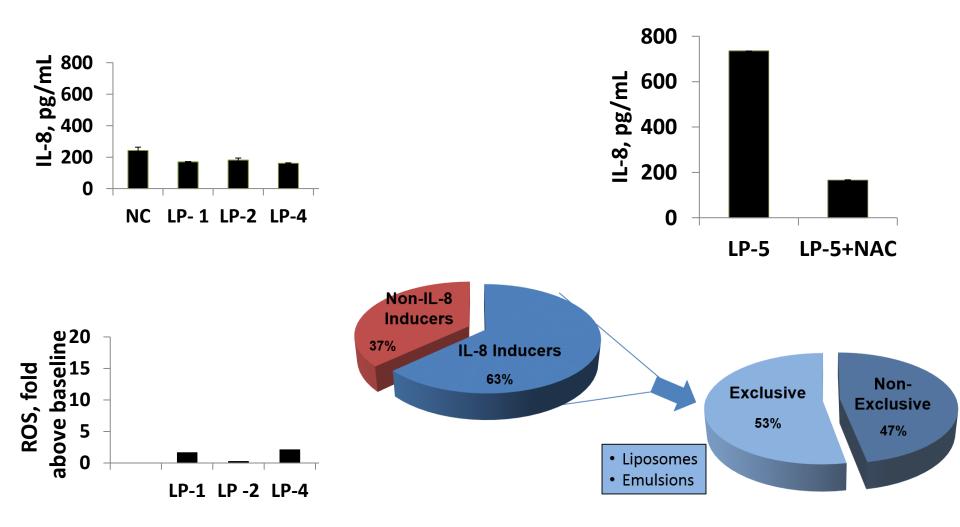
Mirna Therapeutics Halts Phase 1 Clinical Study of MRX34

... following multiple immune-related serious adverse events (SAEs) observed in patients..... Three of these immune-related events resulted in <u>the patient's death</u>...

Alnylam shares crater after trial deaths force investigators to scrap PhIII RNAi drug

Alnylam shocked its investors with news that it has decided to scrap revusiran, its second most advanced RNAi therapy in the pipeline, due to a spike in the number of deaths among patients taking the drug in a late-stage trial. All dosing has been stopped and won't be resumed.

Several companies discontinued product development Immune-Mediated Serious Adverse Events are among the reasons

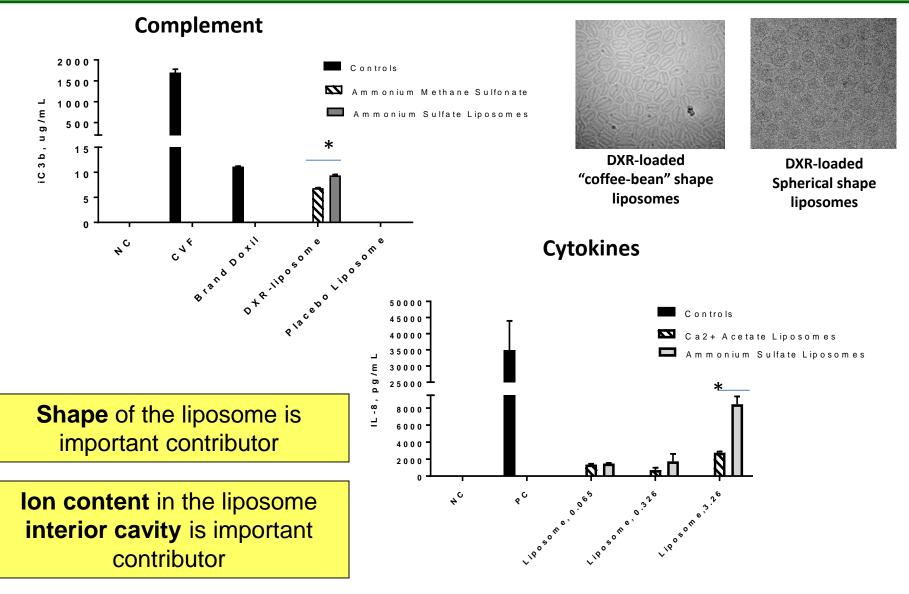

http://www.fiercebiotech.com/biotech/battered-and-bruised-pronaitherapeutics-drops-pnt2258-completely http://pronai.investorroom.com/ https://endpts.com/deaths-force-alnylam-to-scrap-its-no-2-drug-in-phiii-development/

Immunotoxicity of Nanocarriers

This section will discuss undesirable properties of nanocarriers and ways to overcome them

Case Study 1: Anionic and Neutral Liposomes

Exclusive means no concurrent induction other common cytokines (e.g., TNF α , IL-1 β , IL-6, IL-10)


NCI Alliance for

lanotechnology Characterization Nanotechnology

Chemokine induction by anionic and neutral liposomes is due to the oxidative stress and can be effectively managed by antioxidants

Case study 2: role of shape and interior cavity

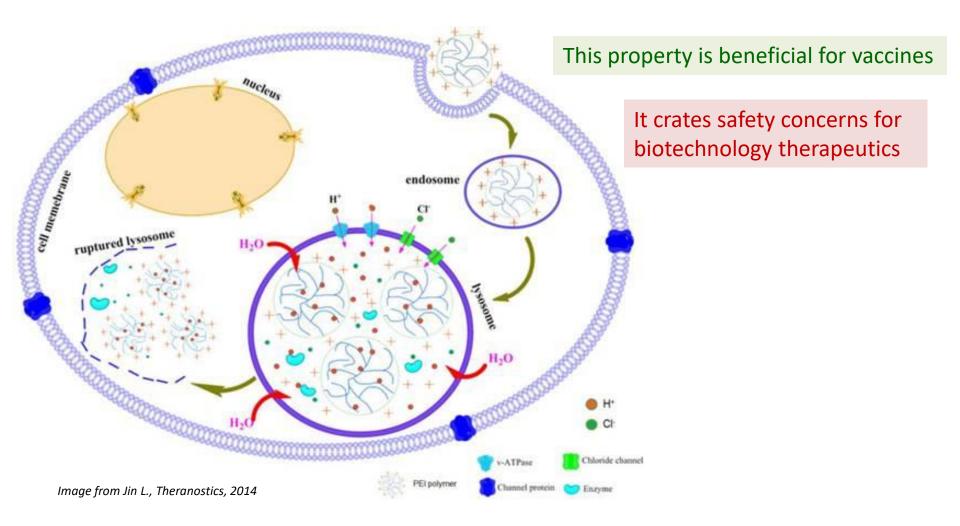
Sam ples, m g/m L total lipid

This study is conducted in collaboration with Chezy Barenholz, Hebrew University

Case Study 3: Cationic Liposomal Carriers

٠

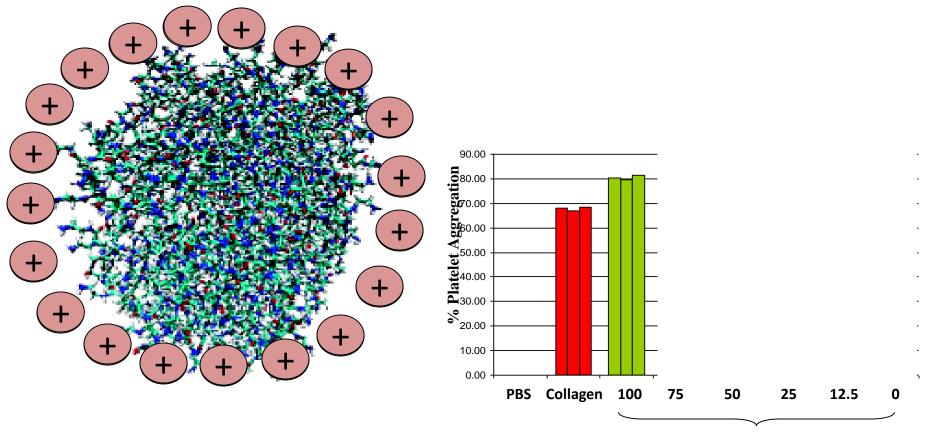
٠



Cationic Liposomes

	IFN-γ	IL-1α	IL-1β	IL-6	IL-8	IL-10	MCP-1	MIP-1α	ΜΙΡ-1β	RANTES	TNF-α
donor #1	-	++	++	+++	+++	+	+++	+++	++	++	++
donor #2	-	++	++	+++	+++	+	+++	+++	++	++	++
donor #3	-	++	++	+++	+++	+	+++	+++	++	+++	++
donor #4	-	++	++	+++	+++	+	+	+	+	++	++
donor #5	-	++	++	+++	+++	+	++	++	++	++	++
donor #6	-	++	++	+++	+++	+	++	+++	++	++	++
donor #7	-	+	+	++	+++	+	++	+++	+	++	++
Detected cytokine		1α	IL-1β	IL-6	TNF-0	ι IL-10) IL-8	MCP-1	. ΜΙΡ-1 α	ΜΙΡ-1β	RANTES
Group: cytokines							(chemokir	nes		
Detected danger sign		/IP-1	MMP-7	MMP-9		38	1		Lipo	osome A	
Group:		metalloproteinases				29 19 19 19	1			Liposom	ne B
ationic liposomes induce wide range of pro- flammatory responses, preventing their systemic dministration to avoid Cytokine Storm and other tox					10 10) - 		M			
			<u> </u>								
Vhile cytokin excessive se often leads to	cretion c	f some	of them	(e.g. TNF			10 ⁰	10 ¹	10 ² FL1-H	10 ³	10

²Mechanism of IL-1 induction by cationic nanocarriers



Cationic particles induce IL-1β through activation of NLRP3 inflammasome triggered by a proton-sponge effect

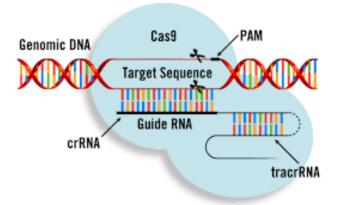
Case Study 4: cationic polymeric platforms

G5-NH2 PAMAM 100 µg/mL, % of surface amines

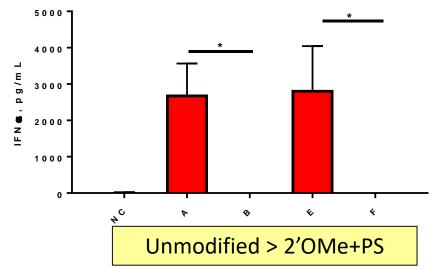
Cationic nanocarriers often are pro-thrombogenic The toxicity can be reduced by masking cationic groups of the particle surface

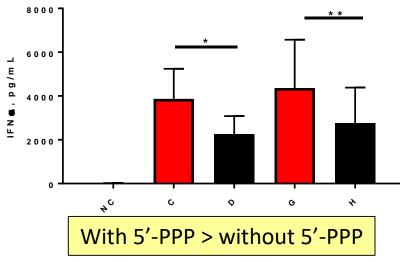
Immunological recognition of new TNAs

• CRISPR gRNA

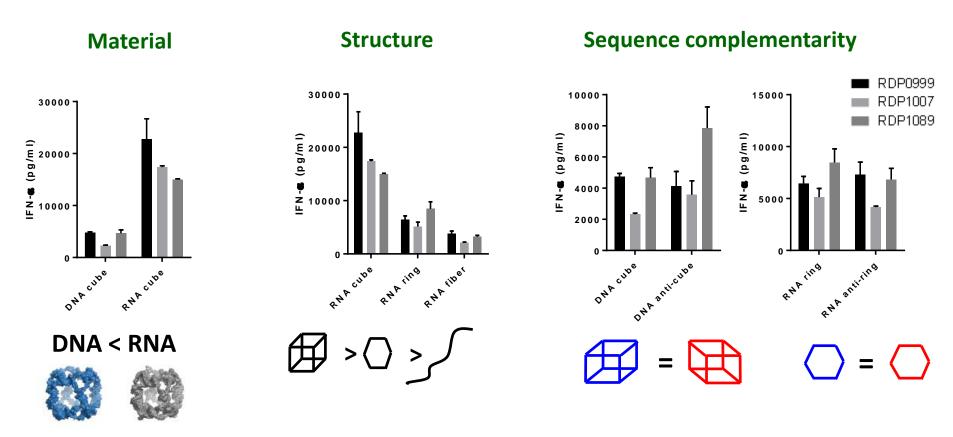

DNA/RNA nanoparticles

This section will discuss immunostimulatory properties of novel TNAs and ways for reducing undesirable immunostimulation


8000


Material

Chemical Modifications


This study was done in Collaboration with Dr. Mark Behlke, IDT

Presence of 5`-triphosphate

Schubert M., et a., J Cytokine Biol, Vol 3(1): 121

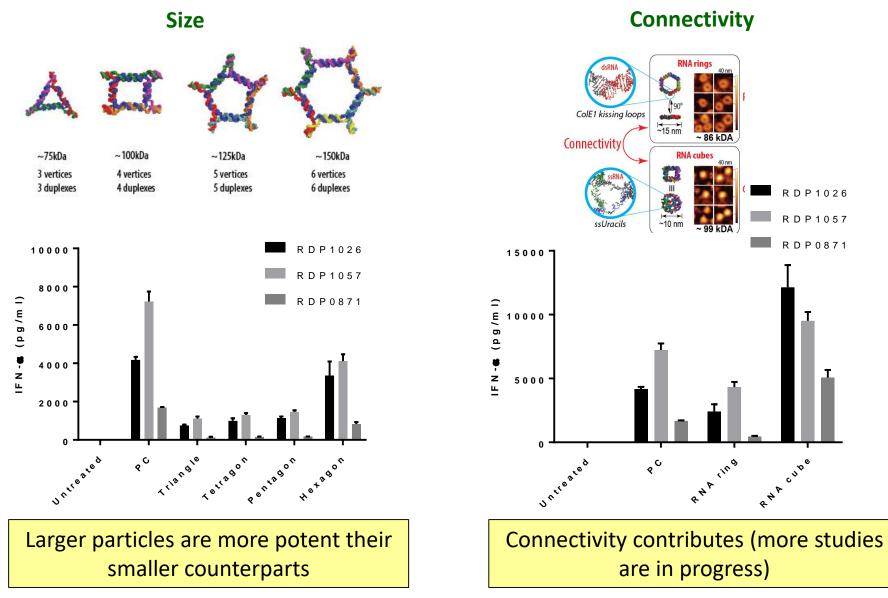
Case Study 6: DNA/RNA Nanoparticles

RNA nanoparticles are more potent than DNA counterparts

Globular particles are more potent than planar than fibrous stuctures No significant difference between sense and antisense

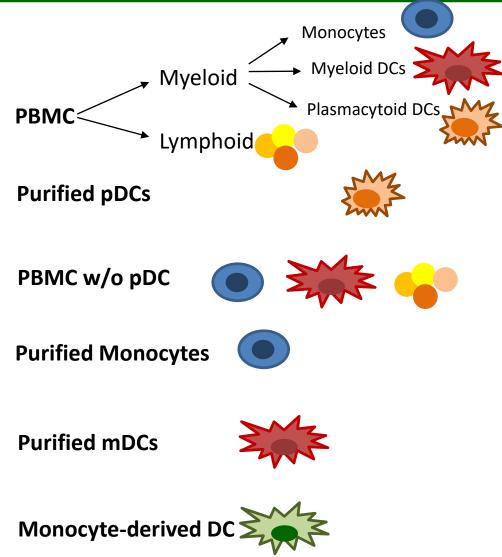
NCI Alliance for

Characterization

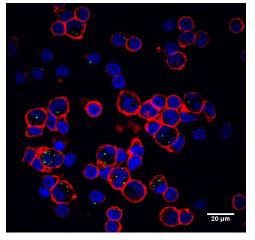

Nanotechnology

Hong E., et al., NanoLetters, 2018

This study was done in collaboration with Dr. Kirill Afonin, UNCC

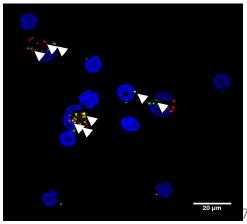

UNC CHARLOTTE

Hong E., et al., NanoLetters, 2018

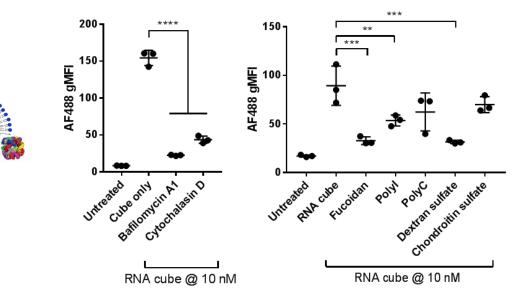


Plasmacytoid DCs are the primary cell type responsible for interferon induction by DNA/RNA nanoparticles

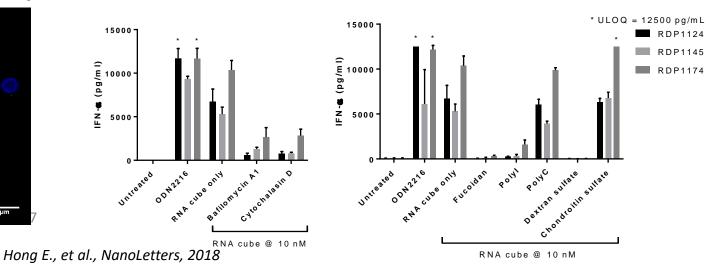
Hong E., et al., NanoLetters, 2018



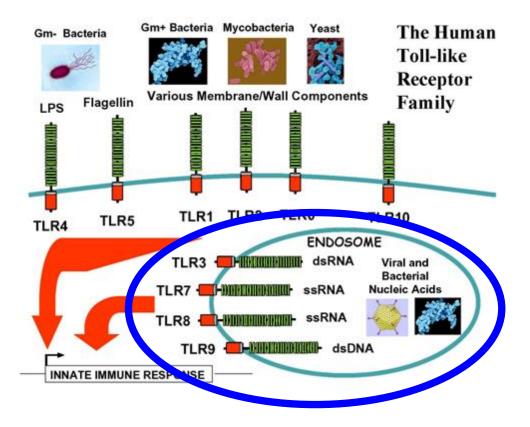
Internalization


Red: Cell membrane (wheat germ agglutinin AF594) Green: Nanoparticles (RNA cube, AF488) Blue: Nucleus (DAPI)

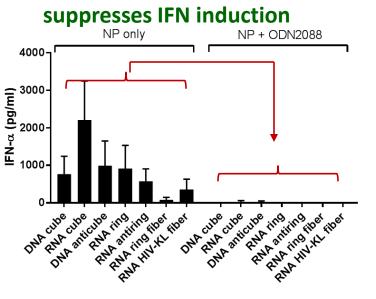
Co-localization with endolysosomal pathway

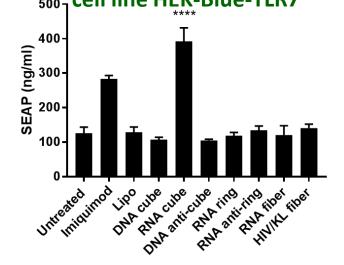


Red: Endolysosomes (Lyso-ID Red) Green: Nanoparticles (RNA cube, AF488) Blue: Nucleus (DAPI)


Inhibition of particles uptake by SR-mediated endocytosis....

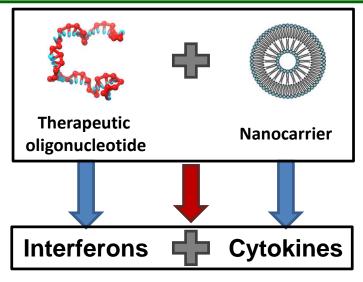
.... correlates with inhibition of IFN production

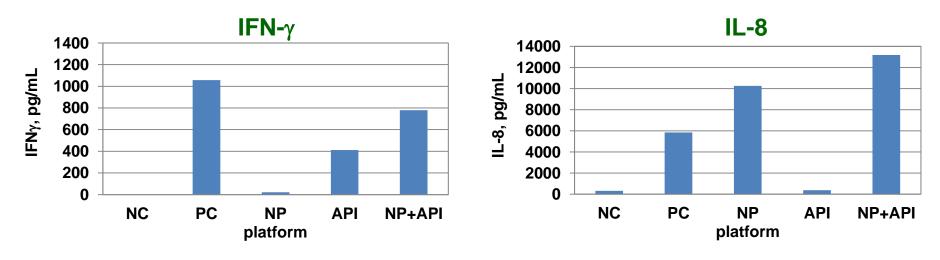



- Intracellular TLRs (3,7,8 and 9) are involved in recognition of DNA/RNA nanoparticles
- TLR7 appears as sensor for RNA cubes

Hong E., et al., NanoLetters, 2018

Pan endosomal TLR inhibitor



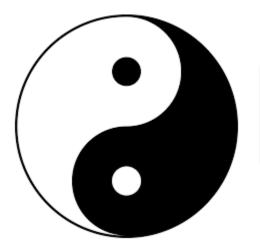

RNA cube activates TLR7 in reporter 500, cell line HEK-Blue-TLR7

Case Study 7: Platform Contribution to API Immunotoxicity



Some nanocarriers contribute to immunostimulation profile of nucleic acid API.

Conclusion



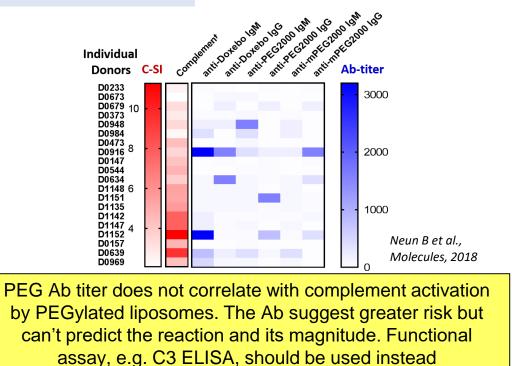
- Immunotoxicity of both nucleic acid API and nanocarrier should be considered
- Use immunologically reactive carrier when immunomodulation is wanted
- Avoid such platforms when immunoreactivity is undesirable

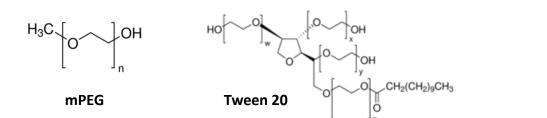
Take Home Message

- Immunotoxicity can be GOOD or BAD
- Depends on whether it is desirable (intended) or undesirable (unintended)

- Nanoparticles can be engineered to improve desirable properties or to reduce undesirable ones
- Understanding SAR and mechanisms of toxicity can inform creation of safe and efficient complex drug systems

• This section will discuss a case study with emphasis on the assay details

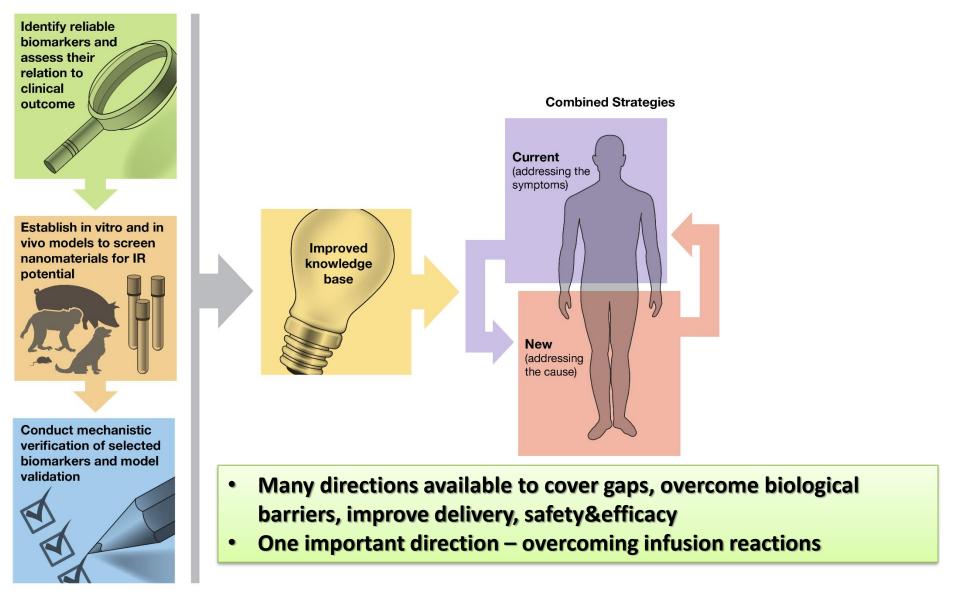

Pre-existing anti-PEG antibody



33

- PEGylation of nanoparticles is common to improve circulation time
- Several studies reported existence of naturally occurring antibody
- Functional significance of these antibodies is incompletely understood

"a high level of pre-existing anti-PEG antibodies was a major, but not the sole, factor necessary for triggering firstexposure allergic reaction to pegnivacogin, a PEGylated RNA aptamer" Ganson et al., J ALLERGY CLIN IMMUNOL MAY 2016

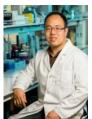

Ab reactive to both PEG and PEG-liposome

High (> 800) titer PEG-reactive antibodies are detected in both healthy males and females, but are more prevalent in females

Assay Note: Tween-20 commonly used in ELISA can't be used for the assay detecting anti-PEG Ab because it interferes with accurate Ab detection

Future Directions

Acknowledgements



NCL Immunology Team

Funded by NCI Contracts N01-CO-12400 and HHSN261200800001E

Enping Hong

Anna Ilinskaya

linskaya Barry Neun

In Edward Cedrone

Tim Potter

<u>Contact Info:</u> Marina Dobrovolskaia (301) 228-4935 marina@mail.nih.gov

http://ncl.cancer.gov

Integrated DNA Technologies University of North Carolina, Charlotte

Mark Behlke

Mollie Schubert

Hebrew University

Mallia Oakukart

Kirill Afonin Weina Ke

Justin Halman

Semmelweis University

Janos Szebeni

- NCI-Frederick Core Laboratories
- All PIs who submitted their nanomaterials to us for characterization