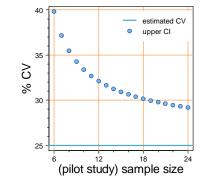


Group-Sequential and Two-Stage Designs


Helmut Schütz

Dealing with Uncertainty

Nothing is 'carved in stone'.

- Never assume perfectly matching products.
 - Generally a Δ of not better than 5% should be assumed (0.950 1.053).
 - For HVD(P)s do not assume a Δ of <10% (0.900 1.111).
- Do not use the CV but one of its confidence limits.
 - Suggested α 0.2 (here: the producer's risk).
 - For ABE the upper CL.
 - For reference-scaling (generally) the lower CL.
- Better alternatives.
 - Group-Sequential Designs
 Fixed total sample size, interim analysis for early stopping.
 - (Adaptive) Sequential Two-Stage Designs
 Fixed stage 1 sample size, re-estimation of the total sample size in the interim analysis.

Remedies?

Group-Sequential Designs

- Fixed total sample size (*N*) and in BE one interim analysis.
 - Requires two assumptions. One 'worst case' CV for the total sample size and a 'realistic' CV for the interim.
 - All published methods were derived for superiority testing, parallel groups, normal distributed data with known variance, and interim at *N*/2.
 - That's not what we have in BE: equivalence (generally in a crossover), lognormal data with unknown variance. Furthermore, due to drop-outs, the interim might not be exactly at *N*/2 (might inflate the Type I Error).
 - Asymmetric split of α is possible, *i.e.*, a small α in the interim and a large one in the final analysis. Examples: Haybittle/Peto (α_1 0.001, α_2 0.049), O'Brien/Fleming (α_1 0.005, α_2 0.048), Zheng et al. (α_1 0.01, α_2 0.04). May require α -spending functions (Lan/DeMets, Jennison/Turnbull) in order to control the Type I Error.

Remedies?

(Adaptive) Sequential Two-Stage Designs

- Fixed stage 1 sample size (n_1) , sample size re-estimation in the interim.
 - Generally a fixed *GMR* is assumed.
 - Fully adaptive methods (*i.e.*, taking also the PE of stage 1 into account) are problematic. May deteriorate power and require a futility criterion. Simulations mandatory.
 - Two 'Types' (Schütz 2015)
 - 1. The same adjusted α is applied in both stages (regardless whether a study stops in the first stage or proceeds to the second stage).
 - 2. An unadjusted α may be used in the first stage, dependent on interim power.

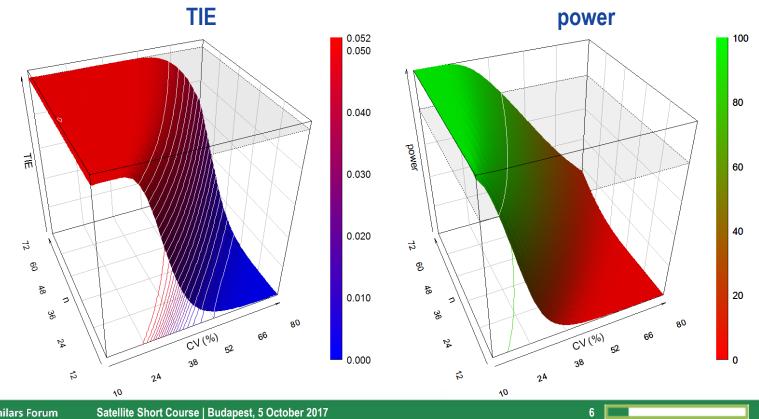
Group-Sequential Designs

Long and accepted tradition in clinical research (phase III)

• Based on Armitage et al. (1969), McPherson (1974), Pocock (1977), O'Brien/Fleming (1979), Lan/DeMets (1983), Jennison/Turnbull (1999), ...

- Developed for superiority testing, parallel groups, normal distributed data with known variance, and interim at *N*/2.
- First proposal by Gould (1995) in the field of BE did not get regulatory acceptance in Europe.
- Asymmetric split of α is possible, *i.e.*,
 - a small α in the interim (i.e., stopping for futility) and
 - a large one in the final analysis (*i.e.*, only small sample size penality).
 - Examples: Haybittle/Peto (α_1 0.001, α_2 0.049), O'Brien/Fleming (α_1 0.005, α_2 0.048).
 - Not developed for crossover designs and sample size re-estimation (fixed n_1 and variable *N*): Lower α_2 or α -spending functions (Lan/DeMets, Jennison/Turnbull) are needed in order to control the Type I Error.

5


- Zheng et al. (2015) for BE in crossovers (α_1 0.01, α_2 0.04) controls the TIE.

Excursion

Type I Error and power

Fixed sample $2 \times 2 \times 2$ design (α 0.05). *GMR* 0.95, *CV* 10 – 80%, *n* 12 –72

·BAC

Satellite Short Course | Budapest, 5 October 2017

Group-Sequential Designs

Type I Error Haybittle/Peto **O'Brien/Fleming** α_1 0.005, α_2 0.048 α_1 0.001, α_2 0.049 0.060 0.060 0.050 0.050 0.040 0.040 0.030 0.030 7 7 5 0.020 0.020 B B Ŗ ß A 0.010 0.010 98 8 12 12 0.000 0.000 ŝ \$ 40 Maximum 0.05849 Maximum 0.05700

 α_2 0.0415 needed to control the TIE

Maximum 0.04878

CV (%)

훯

Ŀ2

ప

Zheng et al.

 $\alpha_1 0.01, \alpha_2 0.04$

·BAC

0.060

0.050

0.040

0.030

0.020

0.010

0.000

Ωø

еß

2nd Annual Biosimilars Forum Satellite Short Course | Budapest, 5 October 2017

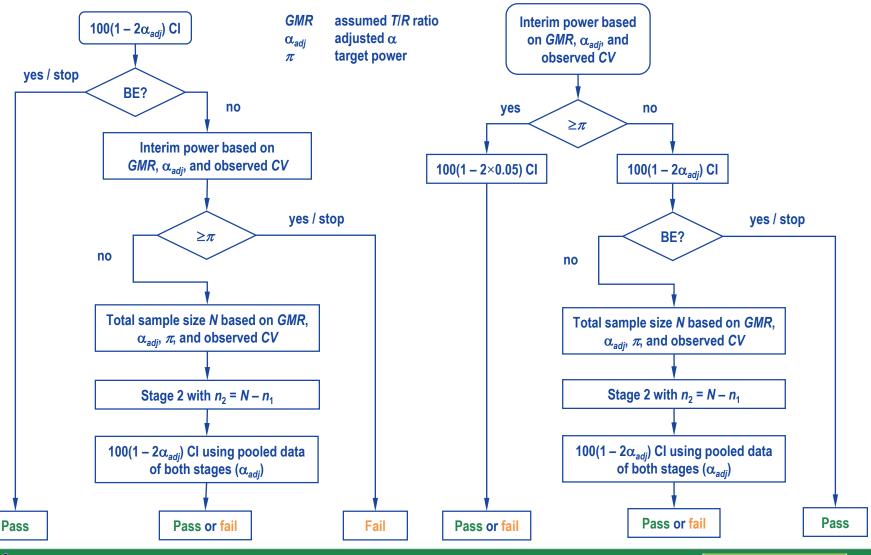
 α_2 0.0413 needed

to control the TIE

Group-Sequential Designs

Review of Guidelines

- Australia (2004), Canada (Draft 2009)
 - Application of Bonferroni's correction (α_{adj} 0.025).
 - Theoretical TIE \leq 0.0494.
 - − For CVs and samples sizes common in BE the TIE generally is \leq 0.04.
- Canada (2012)
 - Pocock's α_{adj} 0.0294.
 - n_1 based on 'most likely variance' + additional subjects in order to compensate for expected dropout-rate.
 - N based on 'worst-case scenario'.
 - If $n_1 \neq N/2$ relevant inflation of the TIE is possible! α -spending functions can control the TIE (but are *not* mentioned in the guidance).

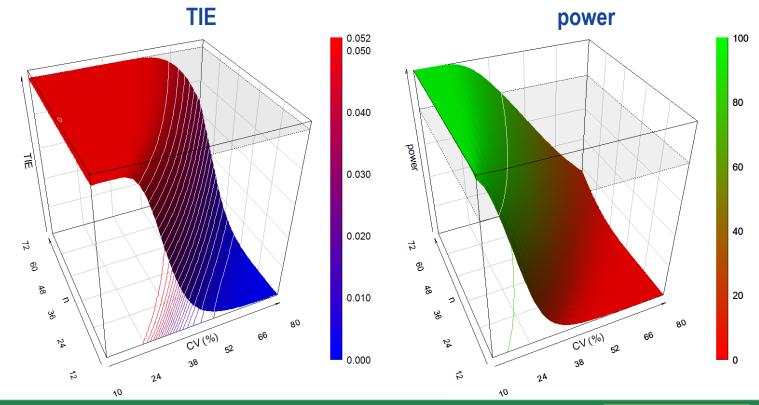

Fixed stage 1 sample size (n_1) , sample size re-estimation in the interim.

- Generally a fixed *GMR* is assumed.
- All published methods are valid only for a range of combinations of stage 1 sample sizes, CVs, GMRs, and desired power.
- Contrary to common believes no analytical proof of controlling the TIE exist.

It is the responsibility of the sponsor to demonstrate (e.g., by simulations) that the consumer risk is preserved.

• Fully adaptive methods (*i.e.*, taking also the PE of stage 1 into account) are problematic. May substantially deteriorate power and require a futility criterion. Simulations mandatory.

Type 1 and Type 2


2nd Annual Biosimilars Forum Satellite Short Course | Budapest, 5 October 2017

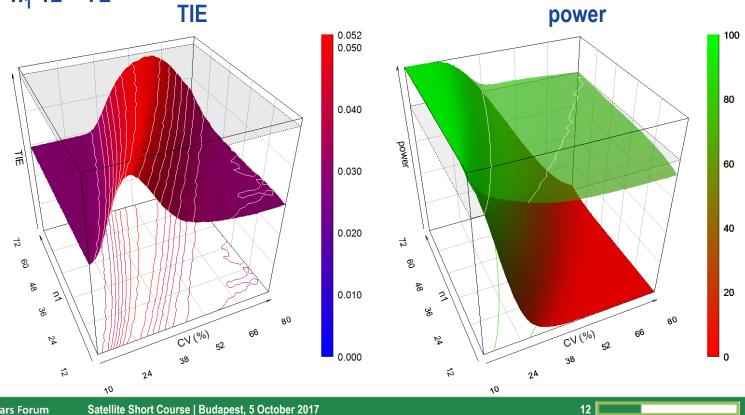
Excursion

Type I Error and power

• Fixed sample 2×2×2 design (α 0.05). *GMR* 0.95, *CV* 10 – 80%, *n* 12 –72

Satellite Short Course | Budapest, 5 October 2017

11


·BAC

Excursion

Type I Error and power

'Type 1' TSD (Potvin Method B, α_{adj} 0.0294). GMR 0.95, CV 10 – 80%, *n*₁ 12 – 72

·BAC

Satellite Short Course | Budapest, 5 October 2017

Methods by Potvin et al. (2008) first validated framework in the context of BE

- Supported by the 'Product Quality Research Institute' (FDA/CDER, Health Canada, USP, AAPS, PhRMA...).
- Inspired by conventional BE testing and Pocock's α_{adj} 0.0294 for GSDs.
 - A fixed *GMR* is assumed (only the *CV* in the interim is taken into account for sample size re-estimation). *GMR* in the first publication was 0.95; later extended to 0.90 by other authors.

13

Target power 80% (later extended to 90%).

BC BAC

(Adaptive) Sequential Two-Stage Designs

Frameworks for crossover TSDs

• Stage 1 sample sizes 12 – 60, no futility rules.

Reference	Туре	Method	GMR	Target power	CV _w	$lpha_{adj}$	TIE _{max}
Potvin <i>et al.</i> (2008)	1	В	0.95	80%	10 – 100%	0.0294	0.0485
	2	С					0.0510
Montague et al. (2012)	2	D	0.90			0.0280	0.0518
Fuglsang (2013)	1	В	0.95	90%	10 – 80%	0.0284	0.0501
	2	C/D				0.0274	0.0503
	2	C/D	0.90			0.0269	0.0501

• Xu et al. (2015). GMR 0.95, target power 80%, futility for the $(1-2\alpha_1)$ Cl.

Туре	e Method	CV _w	Futility region	α ₁	α2	TIE _{max}
1	Е	10 – 30%	0.9374 – 1.0667	0.0249	0.0363	0.050
2	F	10 – 30%	0.9492 - 1.0535	0.0248	0.0364	0.050
1	Е	30 – 55%	0.9305 - 1.0747	0.0254	0.0357	0.050
2	F		0.9350 - 1.0695	0.0259	0.0349	0.050

Review of Guidelines

- EMA (Jan 2010)
 - Acceptable.
 - α_{adj} 0.0294 = 94.12% CI in *both* stages given as an example (*i.e.*, Potvin Method B preferred?)
 - '... there are many acceptable alternatives and the choice of how much alpha to spend at the interim analysis is at the company's discretion.'
 - '... pre-specified ... adjusted significance levels to be used for each of the analyses.'
 - Remarks
 - The TIE must be preserved. Especially important if 'exotic' methods are applied.
 - Does the requirement of pre-specifying *both* alphas imply that α -spending functions or adaptive methods (where α_2 is based on the interim and/or the final sample size) are not acceptable?
 - TSDs are on the workplan of the EMA's Biostatistics Working Party for 2017...

Review of Guidelines

- EMA Q&A Document Rev. 7 (Feb 2013)
 - The model for the combined analysis is (all effects fixed): stage + sequence + sequence(stage) + subject(sequence × stage) + period(stage) + formulation
 - At least two subjects in the second stage.
 - Remarks
 - None of the publications used sequence(stage);

no poolability criterion – combining is always allowed, even if a significant difference between stages is observed.

Simulations performed by the BSWP or out of the blue?

 Modification shown to be irrelevant (Karalis/Macheras 2014). Furthermore, no difference whether subjects are treated as a fixed or random term (unless PE >1.20). Requiring two subjects in the second stage is unnecessary.

```
library(Power2Stage)
power.2stage(method="B", CV=0.2, n1=12, theta0=1.25)$pBE
[1] 0.046262
power.2stage(method="B", CV=0.2, n1=12, theta0=1.25, min.n2=2)$pBE
[1] 0.046262
```


Review of Guidelines

- Health Canada (May 2012)
 - Potvin Method C recommended.
- FDA
 - Potvin Method C / Montague Method D recommended (Davit et al. 2013; 2nd GBHI conference, Rockville 2016).
- Russia (2013), Eurasian Economic Union (2016)
 - Acceptable; Potvin Method B preferred?

... B⊑.. ·B∧C

(Adaptive) Sequential Two-Stage Designs

Futility Rules

- Futility rules (for early stopping) do not inflate the TIE, but may deteriorate power.
 - Stopping criteria must be unambiguously stated in the protocol.
 - Simulations are mandatory in order to assess whether power is sufficient: Introduction of [...] futility rules may severely impact power in trials with sequential designs and under some circumstances such trials might be unethical.

[...] before using any of the methods [...], their operating characteristics should be evaluated for a range of values of n_1 , CV and true ratio of means that are of interest, in order to decide if the Type I error rate is controlled, the power is adequate and the potential maximum total sample size is not too great. Jones/Kenward 2014

- Simulations uncomplicated with current software.
 - Finding a suitable α_{adj} and validating for TIE and power takes ~20 minutes with the R-package Power2Stage (open source).

Dropouts and overrun studies

- Dropouts in the second stage
 - A smaller total sample size translates into a lower chance to show BE and hence, also a lower Type I Error.
 - Like in fixed sample designs the impact on power will be small.
- Including more than the re-estimated subjects in the second stage
 - Common practice in fixed sample designs 'in order to compensate for loss in power based on the expected dropout-rate'.
 - If less dropouts occur in the second stage, the study is 'overrun'.
 The chance to show BE increases and therefore, the TIE!
 - Methods exists in the literature (though for parallel designs, superiority testing only) to adjust α accordingly. Nothing published for equivalence yet.
 - Don't go there.

Cost Analysis

- Consider certain questions:
 - Is it possible to assume a best/worst-case scenario?
 - How large should the size of the first stage be?
 - How large is the expected average sample size in the second stage?
 - Which power can one expect in the first stage and the final analysis?
 - Will introduction of a futility criterion substantially decrease power?
 - Is there an unacceptable sample size penalty compared to a fixed sample design?

Cost Analysis

- Example:
 - Expected CV 20%, target power is 80% for a *GMR* of 0.95.
 Comparison of a 'Type 1' TSD with a fixed sample design (*n* 20, 83.5% power).

n ₁	E [N]	Studies stopped in stage 1 (%)	Studies failed in stage 1 (%)		Studies in stage 2 (%)	Final power (%)	Increase of costs (%)
12	20.6	43.6	2.3	41.3	56.4	84.2	+2.9
14	20.0	55.6	3.0	52.4	44.5	85.0	+0.2
16	20.1	65.9	3.9	61.9	34.1	85.2	+0.3
18	20.6	74.3	5.0	69.3	25.7	85.5	+3.1
20	21.7	81.2	6.3	74.9	18.8	86.2	+8.4
22	23.0	87.2	7.3	79.8	12.8	87.0	+15.0
24	24.6	91.5	7.9	83.6	8.5	88.0	+22.9

Conclusions

- Do not blindly follow guidelines.
 Some current recommendations may inflate the patient's risk and/or deteriorate power.
- Published frameworks can be applied without requiring the sponsor to perform own simulations – although they could further improve power based on additional assumptions.
- GSDs and TSDs are both ethical and economical alternatives to fixed sample designs.
- Recently the EMA's BSWP unofficially! expressed some concerns about the validity of methods based on simulations.

Outlook

- Selecting a candidate formulation from a higher-order crossover; continue with 2×2×2 in the second stage.
- Continue a 2×2×2 TSD in a replicate design for reference-scaling.
- Fully adaptive methods (taking the PE of stage 1 into account without jeopardizing power).
- Exact methods (not relying on simulations).

Case Study 1

Potvin 'Method C' (2010 – 2011)

- Study stopped in stage 1
 - AUC: power >80%; passed BE with 90% CI.
 - C_{max} : power <80%; passed BE with 94.12% Cl.
- NL: Adapting the confidence intervals based upon power is not acceptable and also not in accordance with the EMA guideline.* Confidence intervals should be selected *a priori*, without evaluation of the power. Therefore, the applicant should submit the 94.12% confidence intervals for AUC.
 - * What about: '... choice of how much alpha to spend at the interim analysis is at the company's discretion.'?
 - Failed to show BE of AUC with 94.12% CI.
 - Study repeated in India in a very (!) large fixed sample design.
 - Failed on C_{max}. Project cancelled.

BAC

Case Study 2

Potvin 'Method C' (2011 – 2012)

- Study passed already in stage 1
 - CV in the interim 30.65%, n_1 49.
 - 90% Cl since power was 87.3%.
- UK, IE: Unadjusted α in stage 1 not acceptable.
 - Study passed with 94.12% CI as well (*post hoc* switch to 'Method B').
- AT: The Applicant should demonstrate that the type I error inflation, which can be expected from the chosen approach, did not impact on the decision of bioequivalence.*
 - * Unofficial information: Potvin's table contains only a cell for CV 30% and n_1 48...
 - One million studies simulated based on the study's CV and n_1 .
 - Empiric Type I Error 0.0494 (95% CI: 0.0490 0.0498).

Potvin 'Method C' (2012 – 2013)

- Protocol synopsis with statistical details submitted to the Spanish Agency (2012).
 - Unofficial feedback (after consultation of AEMPS with the BSWP):
 - Potvin's method is not valid in Europe.
- Question to the Spanish Agency (2013):
 [...] we'd like to ask about the current status of TSD BE study, [...] if the BE protocol with Potvin's Method C is acceptable now [...].
 - Answer:
 - Potvin's methods are not acceptable in EMA.

Rumors & Chinese Whispers (Part 1)

TSDs based on simulations

- One member of the PKWP (2015):
 - I made peace with these methods and accept studies *if* the confidence interval is not *too* close to the acceptance limits.
 - Remark: How close is 'not too close'?
- Assessors of ES, AT (2016):
 - Kieser/Rauch (2015) showed that the adjusted α_{adj} 0.0294 used by Potvin et al. is Pocock's for *superiority*. The correct value for *equivalence* is 0.0304 (Jennison/Turnbull 1999).
 - Hence, all studies evaluated with a 94.12% CI in both stages are more conservative than necessary. At least these studies should not be problematic.
 - Remarks:

One could confirm ~0.0304 for 'Method B' in simulations. However, it is a misconception that 0.0304 is 'universally valid' for equivalence. *Other* settings (GMR, power) require *other* values – even for 'Type 1' TSDs.

BE · ·BAC

Rumors & Chinese Whispers (Part 1)

TSDs based on simulations

- Another member of the PKWP asked the BSWP *which* inflation of the Type I Error would be acceptable (2015). He gave 0.0501 as an example.
 - Answer: The TIE must not exceed 0.05.
 - Remark: Rounding of the CI as required by the GL leads to acceptance of studies (regardless the design) with CLs of 79.995% and/or 125.004% – which inflates the TIE up to 0.0508. The BSWP should mind its own business.
- One assessor (PT) saw a study rejected by one of his colleagues although BE was shown (2016).
 - When asked why, the answer was:
 - According to the BSWP Potvin's methods are not acceptable.
 - He was not aware of such a statement and asked for an official document.
 - Such a document does not exist but all statisticians in the agencies know this statement.

BE · ·BAC

Rumors & Chinese Whispers (Part 1)

TSDs based on simulations

- Scientific Advice in SE (2016).
 - Simulations based on Fuglsang's 'Type 1' TSD for Parallel Groups (2014).
 - Large n_1 (up to 125/group), homo- and heterogenous variances, potentially unequal group sizes due to drop-outs.
 - With α_{adj} 0.0274 the maximum Type I Error was 0.04992.
 - Response:
 - According to the guideline, application of a TSD was accepted provided that the patient's risk is maintained at or below 5%.
 - Confirmed that the statement about Potvin's methods is not public. These types of TSDs are not proven in a strict sense.
 - However, it was acknowledged that the simulations covered a sufficient range of possible outcomes (unequal variances and drop-out rates).
 - [...] the empiric type I error rate should be evaluated with the real data (*i.e.*, the actual group sizes and variances of the study).

The Assessor's Dilemma

TSDs based on simulations

- If an assessor would like to accept TSDs he/she is facing a dilemma:
 - TSDs are stated in the GL and therefore, studies are submitted.
 - The BSWP does not 'like' methods based on simulations and prefers methods which demonstrate by an analytical proof that the patient's risk is preserved – which seemingly don't exist.
 - According to the BSWP even a TIE of 0.0501 is not acceptable.
 - With one million simulations the significance limit (>0.05) is 0.05036.
 - Most methods show a TIE below this limit (and many even <0.05).
 - However, with other seeds of the random number generator (slightly) different results are possible.
 - It would be desirable to assess whether a passing study (with a CI close to the AR) has a *relevant* impact on the patient's risk.
- I developed an R-package (AdaptiveBE), which currently is evaluated by assessors in Portugal and Spain.

Function check.TSD()

- Required:
 - Interim data (*CV* or *MSE*, n_1 , PE or CI), data of the final analysis (*CV* or *MSE*, *N*, PE or CI), adjusted alpha(s), the type of the TSD (optionally futility rules).
 - Alternatively (*i.e.*, if not given in the report) the CIs can be used to calculate the CVs and/or the PEs.
- Algorithm:
 - Based on the interim data and the study's framework simulate one million studies in order to obtain the empiric Type I Error.
 - If the TIE \leq 0.05, stop. Can accept the applicant's results.
 - If not, optimize α_{adj} with a target TIE of 0.05. Recalculate the study (interim and optionally final) and compare conclusions with the reported ones.
 - » If conclusions agree, accept the study (increase of the TIE not *relevant*).
 - » If not (reported passes and adjusted fails), calculate the increase of relative risk. Whether the study is accepted or not lies in the hands of the assessor.

Available at https://github.com/Helmut01/AdaptiveBE

- Example 2 of Potvin's 'Method C'
 - The maximum TIE in Table I of in the reference is 0.0510 for CV 20%, n_1 12.
 - I used the reported *MSE*s and sample sizes. The *CV* in the interim was with 18.21% close to the location of the maximum TIE.
 - The power-calculation was done by the shifted *t*-distribution like in the reference.
 - R-code

Function check.TSD()

Part of the output

TIE for specified α : 0.05062 (>0.05) Applied adjustment is not justified. Final analysis of pooled data (specified α 2 0.0294)

94.12% CI: 88.45-116.38% (BE concluded)

Adjusted α 1, 2: 0.050 | 0.02858, 0.02858Adjusted CIs: 90.00% | 94.28%, 94.28%TIE for adjusted α : 0.04992 (n.s. >0.05)Final analysis of pooled data (adjusted α2 0.02858)

94.28% CI: 88.36-116.39% (BE concluded)

Since conclusions of both analyses agree, can accept the original analysis.

- It was difficult to fabricate an example where the original evaluation would pass and the optimized fail, *i.e.*, a borderline case where the CI was 'too close' to the acceptance limits.
 - The maximum TIE reported in any of the publications is 0.0518 (Montague's 'Method D', CV 20%, n₁ 12).
 - I used the interim CV and n_1 , a PE₁ of 0.92, and in the final analysis a higher CV (22.3%), a worse PE (0.88), and one drop-out in the second stage (*N* 45).
 - The power-calculation was done by the shifted *t*-distribution like in the reference.
 - R-code

Function check.TSD()

Part of the output

TIE for specified α : 0.05153 (>0.05) Applied adjustment is not justified. Final analysis of pooled data (specified α 2 0.028)

94.40% CI: 80.00-96.80% (BE concluded)

Adjusted α 1, 2: 0.050 | 0.02709, 0.02709Adjusted CIs: 90.00% | 94.58%, 94.58%TIE for adjusted α : 0.04998 (n.s. >0.05)Final analysis of pooled data (adjusted α2 0.02709)

94.61% CI: 79.94-96.87% (failed to demonstrate BE)

Accepting the reported analysis could increase the relative consumer risk by ~3.1%.

35

Rumors & Chinese Whispers (Part 2)

Simulations vs. 'analytical proof'

- In principle regulators prefer methods where the control of the TIE can be shown analytically.
 - Promising zone approach (Mehta/Pocock 2011).
 Wrong: Superiority / parallel groups / equal variances. Critized by Emerson et al. (2011).
 - Inverse normal method (Kieser/Rauch 2015).
 Wrong: Not a proof but a claim. *Slight* inflation of the TIE (0.05026) in the supplementary material's simulations.
 - Inverse normal approach / maximum combination test implemented in the development release of R-package Power2Stage available at <u>https://github.com/Detlew/Power2Stage</u>

36

Rumors & Chinese Whispers (Part 2)

Simulations vs. 'analytical proof'

- In principle regulators prefer methods where the control of the TIE can be shown analytically.
 - Repeated confidence intervals (Bretz et al. 2009). Adapted for BE (König et al. 2014, 2015).
 - Correct. But only two posters about BE so far (not published in a peerreviewed journal).
- In the inverse normal approach one obtains two *p*-values (compatible with the GLs requiring a confidence interval?)
- Both in the inverse normal approach and with repeated CIs the final α is adapted based on the study's data (compatible with the GLs 'pre-specified α'?)
- Either there is a proof (but *not* for the conditions in BE) or it is not published yet.

37

Rumors & Chinese Whispers (Part 2)

Simulations vs. 'analytical proof'

- Summer Symposium 'To New Shores in Drug Development Implementing Statistical Innovation', Vienna, 27 June 2016
 - Most proofs start with ...
 - Let us assume parallel groups of equal sizes and normal distributed data with μ = 0 and σ = 1
 - ... followed by some fancy formulas.
 - Do these cases *ever* occur in *reality*? Peter Bauer

BE · ·BAC

Group-Sequential and Two-Stage Designs

Thank You! Open Questions?

Helmut Schütz

BEBAC

Consultancy Services for Bioequivalence and Bioavailability Studies 1070 Vienna, Austria <u>helmut.schuetz@bebac.at</u>